Suppr超能文献

基于集成伪时间的稳健准确单细胞数据轨迹推断方法

A robust and accurate single-cell data trajectory inference method using ensemble pseudotime.

机构信息

Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA.

出版信息

BMC Bioinformatics. 2023 Feb 20;24(1):55. doi: 10.1186/s12859-023-05179-2.

Abstract

BACKGROUND

The advance in single-cell RNA sequencing technology has enhanced the analysis of cell development by profiling heterogeneous cells in individual cell resolution. In recent years, many trajectory inference methods have been developed. They have focused on using the graph method to infer the trajectory using single-cell data, and then calculate the geodesic distance as the pseudotime. However, these methods are vulnerable to errors caused by the inferred trajectory. Therefore, the calculated pseudotime suffers from such errors.

RESULTS

We proposed a novel framework for trajectory inference called the single-cell data Trajectory inference method using Ensemble Pseudotime inference (scTEP). scTEP utilizes multiple clustering results to infer robust pseudotime and then uses the pseudotime to fine-tune the learned trajectory. We evaluated the scTEP using 41 real scRNA-seq data sets, all of which had the ground truth development trajectory. We compared the scTEP with state-of-the-art methods using the aforementioned data sets. Experiments on real linear and non-linear data sets demonstrate that our scTEP performed superior on more data sets than any other method. The scTEP also achieved a higher average and lower variance on most metrics than other state-of-the-art methods. In terms of trajectory inference capacity, the scTEP outperforms those methods. In addition, the scTEP is more robust to the unavoidable errors resulting from clustering and dimension reduction.

CONCLUSION

The scTEP demonstrates that utilizing multiple clustering results for the pseudotime inference procedure enhances its robustness. Furthermore, robust pseudotime strengthens the accuracy of trajectory inference, which is the most crucial component in the pipeline. scTEP is available at https://cran.r-project.org/package=scTEP .

摘要

背景

单细胞 RNA 测序技术的进步提高了通过单细胞分辨率对异质细胞进行分析来研究细胞发育的能力。近年来,已经开发了许多轨迹推断方法。它们专注于使用图方法使用单细胞数据推断轨迹,然后计算测地线距离作为伪时间。然而,这些方法容易受到推断轨迹引起的误差的影响。因此,计算出的伪时间会受到这些误差的影响。

结果

我们提出了一种称为使用集成伪时间推断(scTEP)的单细胞数据轨迹推断方法的新框架。scTEP 利用多个聚类结果推断稳健的伪时间,然后使用伪时间微调学习到的轨迹。我们使用 41 个具有真实发育轨迹的真实 scRNA-seq 数据集来评估 scTEP。我们使用上述数据集将 scTEP 与最先进的方法进行了比较。在真实的线性和非线性数据集上的实验表明,我们的 scTEP 在更多数据集上的性能优于任何其他方法。scTEP 在大多数指标上的平均值更高,方差更低,优于其他最先进的方法。在轨迹推断能力方面,scTEP 优于这些方法。此外,scTEP 对聚类和降维过程中不可避免的错误更具鲁棒性。

结论

scTEP 表明,利用多个聚类结果进行伪时间推断过程可以提高其稳健性。此外,稳健的伪时间增强了轨迹推断的准确性,这是该管道中最关键的部分。scTEP 可在 https://cran.r-project.org/package=scTEP 获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a51f/9942315/c38099ae8281/12859_2023_5179_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验