Suppr超能文献

在细菌中核苷酸动态与蛋白质合成的交汇点。

At the Crossroad of Nucleotide Dynamics and Protein Synthesis in Bacteria.

机构信息

Schmid College of Science and Technology, Chapman University, Orange, California, USA.

Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany.

出版信息

Microbiol Mol Biol Rev. 2023 Mar 21;87(1):e0004422. doi: 10.1128/mmbr.00044-22. Epub 2023 Feb 28.

Abstract

Nucleotides are at the heart of the most essential biological processes in the cell, be it as key protagonists in the dogma of molecular biology or by regulating multiple metabolic pathways. The dynamic nature of nucleotides, the cross talk between them, and their constant feedback to and from the cell's metabolic state position them as a hallmark of adaption toward environmental and growth challenges. It has become increasingly clear how the activity of RNA polymerase, the synthesis and maintenance of tRNAs, mRNA translation at all stages, and the biogenesis and assembly of ribosomes are fine-tuned by the pools of intracellular nucleotides. With all aspects composing protein synthesis involved, the ribosome emerges as the molecular hub in which many of these nucleotides encounter each other and regulate the state of the cell. In this review, we aim to highlight intracellular nucleotides in bacteria as dynamic characters permanently cross talking with each other and ultimately regulating protein synthesis at various stages in which the ribosome is mainly the principal character.

摘要

核苷酸是细胞中最基本的生物过程的核心,无论是作为分子生物学教条中的关键主角,还是通过调节多种代谢途径。核苷酸的动态性质、它们之间的相互作用以及它们与细胞代谢状态的不断反馈,使它们成为适应环境和生长挑战的标志。越来越清楚的是,RNA 聚合酶的活性、tRNA 的合成和维持、mRNA 在各个阶段的翻译,以及核糖体的生物发生和组装,都是如何受到细胞内核苷酸池的精细调节的。由于涉及蛋白质合成的所有方面,核糖体成为了分子枢纽,在这个枢纽中,许多核苷酸相互作用,并调节细胞的状态。在这篇综述中,我们旨在强调细菌中的细胞内核苷酸是如何作为动态角色相互交流,并最终在核糖体主要是主角的各个阶段调节蛋白质合成的。

相似文献

1
At the Crossroad of Nucleotide Dynamics and Protein Synthesis in Bacteria.
Microbiol Mol Biol Rev. 2023 Mar 21;87(1):e0004422. doi: 10.1128/mmbr.00044-22. Epub 2023 Feb 28.
2
The weird and wonderful world of bacterial ribosome regulation.
Crit Rev Biochem Mol Biol. 2007 May-Jun;42(3):187-219. doi: 10.1080/10409230701360843.
3
Ribosome heterogeneity: another level of complexity in bacterial translation regulation.
Curr Opin Microbiol. 2013 Apr;16(2):133-9. doi: 10.1016/j.mib.2013.01.009. Epub 2013 Feb 14.
5
Hibernation as a Stage of Ribosome Functioning.
Biochemistry (Mosc). 2020 Nov;85(11):1434-1442. doi: 10.1134/S0006297920110115.
6
Role of GTPases in ribosome assembly.
Biopolymers. 2007 Sep;87(1):1-11. doi: 10.1002/bip.20762.
7
Insights into protein biosynthesis from structures of bacterial ribosomes.
Curr Opin Struct Biol. 2007 Jun;17(3):302-9. doi: 10.1016/j.sbi.2007.05.009. Epub 2007 Jun 15.
8
How to save a bacterial ribosome in times of stress.
Semin Cell Dev Biol. 2023 Feb 28;136:3-12. doi: 10.1016/j.semcdb.2022.03.015. Epub 2022 Mar 21.
9
Pneumococcal RNase R globally impacts protein synthesis by regulating the amount of actively translating ribosomes.
RNA Biol. 2019 Feb;16(2):211-219. doi: 10.1080/15476286.2018.1564616. Epub 2019 Jan 13.
10
Ribosome dynamics and mRNA turnover, a complex relationship under constant cellular scrutiny.
Wiley Interdiscip Rev RNA. 2021 Nov;12(6):e1658. doi: 10.1002/wrna.1658. Epub 2021 May 5.

引用本文的文献

1
Structural and mechanistic basis for the regulation of the chloroplast signal recognition particle by (p)ppGpp.
FEBS Lett. 2025 May;599(10):1373-1385. doi: 10.1002/1873-3468.70008. Epub 2025 Feb 11.
2
Mycoplasma bovis 5'-nucleotidase is a virulence factor conferring mammary fitness in bovine mastitis.
PLoS Pathog. 2024 Nov 12;20(11):e1012628. doi: 10.1371/journal.ppat.1012628. eCollection 2024 Nov.
3
Control of a chemical chaperone by a universally conserved ATPase.
iScience. 2024 Jun 8;27(7):110215. doi: 10.1016/j.isci.2024.110215. eCollection 2024 Jul 19.
4
A new family of bacterial ribosome hibernation factors.
Nature. 2024 Feb;626(8001):1125-1132. doi: 10.1038/s41586-024-07041-8. Epub 2024 Feb 14.
5
Bacterial Subcellular Architecture, Structural Epistasis, and Antibiotic Resistance.
Biology (Basel). 2023 Apr 23;12(5):640. doi: 10.3390/biology12050640.

本文引用的文献

1
Binding of 2',3'-Cyclic Nucleotide Monophosphates to Bacterial Ribosomes Inhibits Translation.
ACS Cent Sci. 2022 Nov 23;8(11):1518-1526. doi: 10.1021/acscentsci.2c00681. Epub 2022 Sep 21.
2
Short prokaryotic Argonautes provide defence against incoming mobile genetic elements through NAD depletion.
Nat Microbiol. 2022 Nov;7(11):1857-1869. doi: 10.1038/s41564-022-01239-0. Epub 2022 Oct 3.
3
Diadenosine tetraphosphate regulates biosynthesis of GTP in Bacillus subtilis.
Nat Microbiol. 2022 Sep;7(9):1442-1452. doi: 10.1038/s41564-022-01193-x. Epub 2022 Aug 11.
4
Recent insights into noncanonical 5' capping and decapping of RNA.
J Biol Chem. 2022 Aug;298(8):102171. doi: 10.1016/j.jbc.2022.102171. Epub 2022 Jun 21.
5
Regulation of Leaderless mRNA Translation in Bacteria.
Microorganisms. 2022 Mar 28;10(4):723. doi: 10.3390/microorganisms10040723.
6
Short prokaryotic Argonaute systems trigger cell death upon detection of invading DNA.
Cell. 2022 Apr 28;185(9):1471-1486.e19. doi: 10.1016/j.cell.2022.03.012. Epub 2022 Apr 4.
7
How to save a bacterial ribosome in times of stress.
Semin Cell Dev Biol. 2023 Feb 28;136:3-12. doi: 10.1016/j.semcdb.2022.03.015. Epub 2022 Mar 21.
9
Cellular Effects of 2',3'-Cyclic Nucleotide Monophosphates in Gram-Negative Bacteria.
J Bacteriol. 2022 Jan 18;204(1):e0020821. doi: 10.1128/JB.00208-21. Epub 2021 Oct 18.
10
Mass spectrometric characterization of cyclic dinucleotides (CDNs) in vivo.
Anal Bioanal Chem. 2021 Nov;413(26):6457-6468. doi: 10.1007/s00216-021-03628-6. Epub 2021 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验