Suppr超能文献

开发和测试一个基于多语言自然语言处理的深度学习系统,用于 10 种语言的 COVID-19 大流行危机:一项多中心研究。

Development and testing of a multi-lingual Natural Language Processing-based deep learning system in 10 languages for COVID-19 pandemic crisis: A multi-center study.

机构信息

Ministry of Health Holdings, Singapore, Singapore.

Singapore National Eye Center, Singapore Eye Research Institute, Singapore, Singapore.

出版信息

Front Public Health. 2023 Feb 13;11:1063466. doi: 10.3389/fpubh.2023.1063466. eCollection 2023.

Abstract

PURPOSE

The COVID-19 pandemic has drastically disrupted global healthcare systems. With the higher demand for healthcare and misinformation related to COVID-19, there is a need to explore alternative models to improve communication. Artificial Intelligence (AI) and Natural Language Processing (NLP) have emerged as promising solutions to improve healthcare delivery. Chatbots could fill a pivotal role in the dissemination and easy accessibility of accurate information in a pandemic. In this study, we developed a multi-lingual NLP-based AI chatbot, DR-COVID, which responds accurately to open-ended, COVID-19 related questions. This was used to facilitate pandemic education and healthcare delivery.

METHODS

First, we developed DR-COVID with an ensemble NLP model on the Telegram platform (https://t.me/drcovid_nlp_chatbot). Second, we evaluated various performance metrics. Third, we evaluated multi-lingual text-to-text translation to Chinese, Malay, Tamil, Filipino, Thai, Japanese, French, Spanish, and Portuguese. We utilized 2,728 training questions and 821 test questions in English. Primary outcome measurements were (A) overall and top 3 accuracies; (B) Area Under the Curve (AUC), precision, recall, and F1 score. Overall accuracy referred to a correct response for the top answer, whereas top 3 accuracy referred to an appropriate response for any one answer amongst the top 3 answers. AUC and its relevant matrices were obtained from the Receiver Operation Characteristics (ROC) curve. Secondary outcomes were (A) multi-lingual accuracy; (B) comparison to enterprise-grade chatbot systems. The sharing of training and testing datasets on an open-source platform will also contribute to existing data.

RESULTS

Our NLP model, utilizing the ensemble architecture, achieved overall and top 3 accuracies of 0.838 [95% confidence interval (CI): 0.826-0.851] and 0.922 [95% CI: 0.913-0.932] respectively. For overall and top 3 results, AUC scores of 0.917 [95% CI: 0.911-0.925] and 0.960 [95% CI: 0.955-0.964] were achieved respectively. We achieved multi-linguicism with nine non-English languages, with Portuguese performing the best overall at 0.900. Lastly, DR-COVID generated answers more accurately and quickly than other chatbots, within 1.12-2.15 s across three devices tested.

CONCLUSION

DR-COVID is a clinically effective NLP-based conversational AI chatbot, and a promising solution for healthcare delivery in the pandemic era.

摘要

目的

COVID-19 大流行严重扰乱了全球医疗保健系统。由于对医疗保健的需求增加以及与 COVID-19 相关的错误信息,需要探索替代模型来改善沟通。人工智能 (AI) 和自然语言处理 (NLP) 已成为改善医疗保健服务的有前途的解决方案。聊天机器人可以在大流行期间在传播和方便获取准确信息方面发挥关键作用。在这项研究中,我们开发了一种基于多语言 NLP 的 AI 聊天机器人 DR-COVID,它可以准确回答开放式 COVID-19 相关问题。这用于促进大流行教育和医疗保健服务。

方法

首先,我们在 Telegram 平台 (https://t.me/drcovid_nlp_chatbot) 上使用集成 NLP 模型开发了 DR-COVID。其次,我们评估了各种性能指标。第三,我们评估了对中文、马来语、泰米尔语、菲律宾语、泰语、日语、法语、西班牙语和葡萄牙语的多语言文本到文本翻译。我们在英语中使用了 2728 个培训问题和 821 个测试问题。主要结果测量是(A)整体和前 3 名的准确性;(B)曲线下面积 (AUC)、精度、召回率和 F1 分数。整体准确性是指对最佳答案的正确回答,而前 3 名准确性是指对前 3 个答案中任何一个答案的适当回答。AUC 及其相关矩阵是从接收器操作特性 (ROC) 曲线获得的。次要结果是(A)多语言准确性;(B)与企业级聊天机器人系统的比较。在开源平台上共享培训和测试数据集也将有助于现有数据。

结果

我们的 NLP 模型利用集成架构实现了 0.838 [95%置信区间 (CI):0.826-0.851]的整体和前 3 名准确性,以及 0.922 [95% CI:0.913-0.932]的整体和前 3 名准确性。对于整体和前 3 名结果,分别实现了 0.917 [95% CI:0.911-0.925]和 0.960 [95% CI:0.955-0.964]的 AUC 分数。我们通过九种非英语语言实现了多语言功能,葡萄牙语的整体表现最佳,为 0.900。最后,DR-COVID 在三个测试设备上的响应时间在 1.12-2.15 秒之间,比其他聊天机器人更快、更准确地生成答案。

结论

DR-COVID 是一种临床有效的基于 NLP 的对话式 AI 聊天机器人,是大流行时代医疗保健服务的有前途的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8742/9968846/ba42c1c6c84c/fpubh-11-1063466-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验