Shickel Benjamin, Lucarelli Nicholas, Rao Adish S, Yun Donghwan, Moon Kyung Chul, Han Seung Seok, Sarder Pinaki
Dept. of Medicine-Quantitative Health, Univ. of Florida, Gainesville, FL, USA.
Univ. of Florida Intelligent Critical Care Center, Gainesville, FL, USA; Dept. of Electrical & Computer Engineering, Univ. of Florida, Gainesville, FL, USA.
medRxiv. 2023 Feb 23:2023.02.20.23286044. doi: 10.1101/2023.02.20.23286044.
Diabetic nephropathy (DN) in the context of type 2 diabetes is the leading cause of end-stage renal disease (ESRD) in the United States. DN is graded based on glomerular morphology and has a spatially heterogeneous presentation in kidney biopsies that complicates pathologists' predictions of disease progression. Artificial intelligence and deep learning methods for pathology have shown promise for quantitative pathological evaluation and clinical trajectory estimation; but, they often fail to capture large-scale spatial anatomy and relationships found in whole slide images (WSIs). In this study, we present a transformer-based, multi-stage ESRD prediction framework built upon nonlinear dimensionality reduction, relative Euclidean pixel distance embeddings between every pair of observable glomeruli, and a corresponding spatial self-attention mechanism for a robust contextual representation. We developed a deep transformer network for encoding WSI and predicting future ESRD using a dataset of 56 kidney biopsy WSIs from DN patients at Seoul National University Hospital. Using a leave-one-out cross-validation scheme, our modified transformer framework outperformed RNNs, XGBoost, and logistic regression baseline models, and resulted in an area under the receiver operating characteristic curve (AUC) of 0.97 (95% CI: 0.90-1.00) for predicting two-year ESRD, compared with an AUC of 0.86 (95% CI: 0.66-0.99) without our relative distance embedding, and an AUC of 0.76 (95% CI: 0.59-0.92) without a denoising autoencoder module. While the variability and generalizability induced by smaller sample sizes are challenging, our distance-based embedding approach and overfitting mitigation techniques yielded results that sugest opportunities for future spatially aware WSI research using limited pathology datasets.
2型糖尿病背景下的糖尿病肾病(DN)是美国终末期肾病(ESRD)的主要原因。DN根据肾小球形态进行分级,在肾活检中具有空间异质性表现,这使得病理学家对疾病进展的预测变得复杂。用于病理学的人工智能和深度学习方法在定量病理评估和临床轨迹估计方面显示出前景;但是,它们往往无法捕捉全切片图像(WSIs)中发现的大规模空间解剖结构和关系。在本研究中,我们提出了一个基于Transformer的多阶段ESRD预测框架,该框架基于非线性降维、每对可观察到的肾小球之间的相对欧几里得像素距离嵌入以及相应的空间自注意力机制,以实现强大的上下文表示。我们开发了一个深度Transformer网络,用于对WSI进行编码并使用来自首尔国立大学医院DN患者的56个肾活检WSI数据集预测未来的ESRD。使用留一法交叉验证方案,我们改进的Transformer框架优于RNN、XGBoost和逻辑回归基线模型,在预测两年ESRD时,受试者工作特征曲线下面积(AUC)为0.97(95%CI:0.90 - 1.00),相比之下,没有我们的相对距离嵌入时AUC为0.86(95%CI:0.66 - 0.99),没有去噪自编码器模块时AUC为0.76(95%CI:0.59 - 0.92)。虽然较小样本量引起的变异性和可推广性具有挑战性,但我们基于距离的嵌入方法和过拟合缓解技术产生的结果表明,利用有限的病理数据集进行未来空间感知WSI研究存在机会。