Suppr超能文献

一种用于CITE-seq和单细胞RNA-seq数据整合以及细胞表面蛋白预测与插补的多用途深度学习方法。

A multi-use deep learning method for CITE-seq and single-cell RNA-seq data integration with cell surface protein prediction and imputation.

作者信息

Lakkis Justin, Schroeder Amelia, Su Kenong, Lee Michelle Y Y, Bashore Alexander C, Reilly Muredach P, Li Mingyao

机构信息

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Nat Mach Intell. 2022 Nov;4(11):940-952. doi: 10.1038/s42256-022-00545-w. Epub 2022 Oct 27.

Abstract

CITE-seq, a single-cell multi-omics technology that measures RNA and protein expression simultaneously in single cells, has been widely applied in biomedical research, especially in immune related disorders and other diseases such as influenza and COVID-19. Despite the proliferation of CITE-seq, it is still costly to generate such data. Although data integration can increase information content, this raises computational challenges. First, combining multiple datasets is prone to batch effects that need to be addressed. Secondly, it is difficult to combine multiple CITE-seq datasets because the protein panels in different datasets may only partially overlap. Integrating multiple CITE-seq and single-cell RNA-seq (scRNA-seq) datasets is important because this allows the utilization of as many data as possible to uncover cell population heterogeneity. To overcome these challenges, we present sciPENN, a multi-use deep learning approach that supports CITE-seq and scRNA-seq data integration, protein expression prediction for scRNA-seq, protein expression imputation for CITE-seq, quantification of prediction and imputation uncertainty, and cell type label transfer from CITE-seq to scRNA-seq. Comprehensive evaluations spanning multiple datasets demonstrate that sciPENN outperforms other current state-of-the-art methods.

摘要

CITE-seq是一种单细胞多组学技术,可在单细胞中同时测量RNA和蛋白质表达,已广泛应用于生物医学研究,尤其是在免疫相关疾病以及流感和COVID-19等其他疾病的研究中。尽管CITE-seq技术不断发展,但生成此类数据的成本仍然很高。虽然数据整合可以增加信息含量,但这也带来了计算方面的挑战。首先,合并多个数据集容易出现批次效应,需要加以解决。其次,合并多个CITE-seq数据集很困难,因为不同数据集中的蛋白质面板可能只是部分重叠。整合多个CITE-seq和单细胞RNA测序(scRNA-seq)数据集很重要,因为这可以利用尽可能多的数据来揭示细胞群体的异质性。为了克服这些挑战,我们提出了sciPENN,这是一种多用途深度学习方法,支持CITE-seq和scRNA-seq数据整合、scRNA-seq的蛋白质表达预测、CITE-seq的蛋白质表达插补、预测和插补不确定性的量化,以及细胞类型标签从CITE-seq到scRNA-seq的转移。对多个数据集的综合评估表明,sciPENN优于其他当前的先进方法。

相似文献

3
4
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
7
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
10
Single-incision sling operations for urinary incontinence in women.
Cochrane Database Syst Rev. 2017 Jul 26;7(7):CD008709. doi: 10.1002/14651858.CD008709.pub3.

引用本文的文献

2
Comparative benchmarking of single-cell clustering algorithms for transcriptomic and proteomic data.
Genome Biol. 2025 Sep 3;26(1):265. doi: 10.1186/s13059-025-03719-y.
3
Cross-level Cross-Scale Inference and Imputation of Single-cell Spatial Proteomics.
Res Sq. 2025 Jul 28:rs.3.rs-7108570. doi: 10.21203/rs.3.rs-7108570/v1.
4
DGAT: A Dual-Graph Attention Network for Inferring Spatial Protein Landscapes from Transcriptomics.
bioRxiv. 2025 Jul 9:2025.07.05.662121. doi: 10.1101/2025.07.05.662121.
5
Automated denoising of CITE-seq data with ThresholdR.
Cell Rep Methods. 2025 Jul 21;5(7):101088. doi: 10.1016/j.crmeth.2025.101088. Epub 2025 Jul 8.
6
ADTnorm: robust integration of single-cell protein measurement across CITE-seq datasets.
Nat Commun. 2025 Jul 1;16(1):5852. doi: 10.1038/s41467-025-61023-6.
7
Multi-physiology modeling of the immune system in the era of precision immunotherapy.
Front Immunol. 2025 May 29;16:1548768. doi: 10.3389/fimmu.2025.1548768. eCollection 2025.
8
Dissecting the Heterogeneity of Senescent Cells Through CITE-seq Integration.
Methods Mol Biol. 2025;2908:99-109. doi: 10.1007/978-1-0716-4434-8_7.
9
New horizons at the interface of artificial intelligence and translational cancer research.
Cancer Cell. 2025 Apr 14;43(4):708-727. doi: 10.1016/j.ccell.2025.03.018.

本文引用的文献

1
The precursors of CD8 tissue resident memory T cells: from lymphoid organs to infected tissues.
Nat Rev Immunol. 2022 May;22(5):283-293. doi: 10.1038/s41577-021-00590-3. Epub 2021 Sep 3.
2
Integrated analysis of multimodal single-cell data.
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
3
Single-cell multi-omics analysis of the immune response in COVID-19.
Nat Med. 2021 May;27(5):904-916. doi: 10.1038/s41591-021-01329-2. Epub 2021 Apr 20.
4
Joint probabilistic modeling of single-cell multi-omic data with totalVI.
Nat Methods. 2021 Mar;18(3):272-282. doi: 10.1038/s41592-020-01050-x. Epub 2021 Feb 15.
6
Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases.
Front Immunol. 2019 Aug 30;10:2035. doi: 10.3389/fimmu.2019.02035. eCollection 2019.
7
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.
8
Integrative single-cell analysis.
Nat Rev Genet. 2019 May;20(5):257-272. doi: 10.1038/s41576-019-0093-7.
9
Single-Cell (Multi)omics Technologies.
Annu Rev Genomics Hum Genet. 2018 Aug 31;19:15-41. doi: 10.1146/annurev-genom-091416-035324. Epub 2018 May 4.
10
SCANPY: large-scale single-cell gene expression data analysis.
Genome Biol. 2018 Feb 6;19(1):15. doi: 10.1186/s13059-017-1382-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验