Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore.
Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
ACS Nano. 2023 Mar 28;17(6):5211-5295. doi: 10.1021/acsnano.2c12606. Epub 2023 Mar 9.
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
人类越来越依赖传感器来应对重大挑战,并在数字化和大数据时代提高生活质量。为了实现无处不在的传感,人们开发了柔性传感器来克服传统刚性传感器的局限性。尽管在过去十年中,台边研究取得了快速进展,但柔性传感器的市场应用仍然有限。为了简化并加速它们的部署,在这里,我们确定了阻碍柔性传感器成熟的瓶颈,并提出了有前途的解决方案。我们首先分析了在实现实际应用中令人满意的传感性能方面所面临的挑战,然后总结了与传感器-生物学接口兼容的问题,接着简要讨论了传感器网络的供电和连接问题。还分析了通往商业化和该领域可持续增长的问题,强调了环境问题,并强调了商业、监管和道德考虑等非技术问题。此外,我们还展望了未来的智能柔性传感器。在提出全面的路线图时,我们希望将研究工作引导到共同的目标上,并指导来自不同社区的协调发展战略。通过这种合作努力,可以更快地取得科学突破,并将其用于造福人类。