Suppr超能文献

柔性传感器技术路线图

Technology Roadmap for Flexible Sensors.

机构信息

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore.

Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

出版信息

ACS Nano. 2023 Mar 28;17(6):5211-5295. doi: 10.1021/acsnano.2c12606. Epub 2023 Mar 9.

Abstract

Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.

摘要

人类越来越依赖传感器来应对重大挑战,并在数字化和大数据时代提高生活质量。为了实现无处不在的传感,人们开发了柔性传感器来克服传统刚性传感器的局限性。尽管在过去十年中,台边研究取得了快速进展,但柔性传感器的市场应用仍然有限。为了简化并加速它们的部署,在这里,我们确定了阻碍柔性传感器成熟的瓶颈,并提出了有前途的解决方案。我们首先分析了在实现实际应用中令人满意的传感性能方面所面临的挑战,然后总结了与传感器-生物学接口兼容的问题,接着简要讨论了传感器网络的供电和连接问题。还分析了通往商业化和该领域可持续增长的问题,强调了环境问题,并强调了商业、监管和道德考虑等非技术问题。此外,我们还展望了未来的智能柔性传感器。在提出全面的路线图时,我们希望将研究工作引导到共同的目标上,并指导来自不同社区的协调发展战略。通过这种合作努力,可以更快地取得科学突破,并将其用于造福人类。

相似文献

1
Technology Roadmap for Flexible Sensors.
ACS Nano. 2023 Mar 28;17(6):5211-5295. doi: 10.1021/acsnano.2c12606. Epub 2023 Mar 9.
2
Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.
Acc Chem Res. 2019 Feb 19;52(2):288-296. doi: 10.1021/acs.accounts.8b00497. Epub 2019 Jan 17.
3
Flexible Electronics toward Wearable Sensing.
Acc Chem Res. 2019 Mar 19;52(3):523-533. doi: 10.1021/acs.accounts.8b00500. Epub 2019 Feb 15.
4
Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics.
Acc Chem Res. 2018 Nov 20;51(11):2829-2838. doi: 10.1021/acs.accounts.8b00465. Epub 2018 Nov 7.
5
Recent Advances in Flexible Tactile Sensors for Intelligent Systems.
Sensors (Basel). 2021 Aug 10;21(16):5392. doi: 10.3390/s21165392.
6
Recent advances in flexible hydrogel sensors: Enhancing data processing and machine learning for intelligent perception.
Biosens Bioelectron. 2024 Oct 1;261:116499. doi: 10.1016/j.bios.2024.116499. Epub 2024 Jun 17.
7
Silk-Based Advanced Materials for Soft Electronics.
Acc Chem Res. 2019 Oct 15;52(10):2916-2927. doi: 10.1021/acs.accounts.9b00333. Epub 2019 Sep 19.
9
Wearable and Implantable Soft Bioelectronics: Device Designs and Material Strategies.
Annu Rev Chem Biomol Eng. 2021 Jun 7;12:359-391. doi: 10.1146/annurev-chembioeng-101420-024336.
10
Recent Advances in Touch Sensors for Flexible Wearable Devices.
Sensors (Basel). 2022 Jun 13;22(12):4460. doi: 10.3390/s22124460.

引用本文的文献

1
Focus-tunable real-time imaging system based on ultrathin perovskite curved image sensor with hierarchical mesh design.
Sci Adv. 2025 Sep 5;11(36):eadw7826. doi: 10.1126/sciadv.adw7826. Epub 2025 Sep 3.
2
A reconfigurable piezo-ionotropic polymer membrane for sustainable multi-resonance acoustic sensing.
Nat Commun. 2025 Sep 2;16(1):8180. doi: 10.1038/s41467-025-63643-4.
3
Materials and device strategies to enhance spatiotemporal resolution in bioelectronics.
Nat Rev Mater. 2025 Jun;10(6):425-448. doi: 10.1038/s41578-025-00798-y. Epub 2025 May 1.
4
CRISPR in Neurodegenerative Diseases Treatment: An Alternative Approach to Current Therapies.
Genes (Basel). 2025 Jul 22;16(8):850. doi: 10.3390/genes16080850.
7
Multi-Objective Optimization of IME-Based Acoustic Tweezers for Mitigating Node Displacements.
Polymers (Basel). 2025 Jul 24;17(15):2018. doi: 10.3390/polym17152018.
8
Digital Divide: Contrasting Provider and User Insights on Healthcare Services During the COVID-19 Pandemic.
Healthcare (Basel). 2025 Jul 25;13(15):1803. doi: 10.3390/healthcare13151803.
9
Symbiopersonal intelligence towards symbiotic and personalized digital medicine.
Fundam Res. 2025 Jan 23;5(4):1423-1428. doi: 10.1016/j.fmre.2025.01.009. eCollection 2025 Jul.

本文引用的文献

1
A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo.
Npj Flex Electron. 2020;4(1):5. doi: 10.1038/s41528-020-0068-y. Epub 2020 Apr 23.
2
The imperative of physics-based modeling and inverse theory in computational science.
Nat Comput Sci. 2021 Mar;1(3):166-168. doi: 10.1038/s43588-021-00040-z.
3
Point-of-use sensors and machine learning enable low-cost determination of soil nitrogen.
Nat Food. 2021 Dec;2(12):981-989. doi: 10.1038/s43016-021-00416-4. Epub 2021 Dec 13.
4
Smart nanobiosensors in agriculture.
Nat Food. 2021 Dec;2(12):920-921. doi: 10.1038/s43016-021-00426-2.
5
Wearable chemical sensors for biomarker discovery in the omics era.
Nat Rev Chem. 2022 Dec;6(12):899-915. doi: 10.1038/s41570-022-00439-w. Epub 2022 Nov 15.
6
A non-academic perspective on the future of lithium-based batteries.
Nat Commun. 2023 Jan 26;14(1):420. doi: 10.1038/s41467-023-35933-2.
8
Soft strain-insensitive bioelectronics featuring brittle materials.
Science. 2022 Dec 16;378(6625):1222-1227. doi: 10.1126/science.abn5142. Epub 2022 Dec 15.
9
Intelligent wearable devices based on nanomaterials and nanostructures for healthcare.
Nanoscale. 2023 Jan 5;15(2):405-433. doi: 10.1039/d2nr04551f.
10
A Wireless, Regeneratable Cocaine Sensing Scheme Enabled by Allosteric Regulation of pH Sensitive Aptamers.
ACS Nano. 2022 Dec 27;16(12):20922-20936. doi: 10.1021/acsnano.2c08511. Epub 2022 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验