Suppr超能文献

通过将集落形成存活数据与多层次分子数据相结合,对胶质母细胞瘤细胞系的治疗耐药性进行系统的体外分析。

Systematic in vitro analysis of therapy resistance in glioblastoma cell lines by integration of clonogenic survival data with multi-level molecular data.

机构信息

Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.

Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.

出版信息

Radiat Oncol. 2023 Mar 11;18(1):51. doi: 10.1186/s13014-023-02241-4.

Abstract

Despite intensive basic scientific, translational, and clinical efforts in the last decades, glioblastoma remains a devastating disease with a highly dismal prognosis. Apart from the implementation of temozolomide into the clinical routine, novel treatment approaches have largely failed, emphasizing the need for systematic examination of glioblastoma therapy resistance in order to identify major drivers and thus, potential vulnerabilities for therapeutic intervention. Recently, we provided proof-of-concept for the systematic identification of combined modality radiochemotherapy treatment vulnerabilities via integration of clonogenic survival data upon radio(chemo)therapy with low-density transcriptomic profiling data in a panel of established human glioblastoma cell lines. Here, we expand this approach to multiple molecular levels, including genomic copy number, spectral karyotyping, DNA methylation, and transcriptome data. Correlation of transcriptome data with inherent therapy resistance on the single gene level yielded several candidates that were so far underappreciated in this context and for which clinically approved drugs are readily available, such as the androgen receptor (AR). Gene set enrichment analyses confirmed these results, and identified additional gene sets, including reactive oxygen species detoxification, mammalian target of rapamycin complex 1 (MTORC1) signaling, and ferroptosis/autophagy-related regulatory circuits to be associated with inherent therapy resistance in glioblastoma cells. To identify pharmacologically accessible genes within those gene sets, leading edge analyses were performed yielding candidates with functions in thioredoxin/peroxiredoxin metabolism, glutathione synthesis, chaperoning of proteins, prolyl hydroxylation, proteasome function, and DNA synthesis/repair. Our study thus confirms previously nominated targets for mechanism-based multi-modal glioblastoma therapy, provides proof-of-concept for this workflow of multi-level data integration, and identifies novel candidates for which pharmacological inhibitors are readily available and whose targeting in combination with radio(chemo)therapy deserves further examination. In addition, our study also reveals that the presented workflow requires mRNA expression data, rather than genomic copy number or DNA methylation data, since no stringent correlation between these data levels could be observed. Finally, the data sets generated in the present study, including functional and multi-level molecular data of commonly used glioblastoma cell lines, represent a valuable toolbox for other researchers in the field of glioblastoma therapy resistance.

摘要

尽管在过去几十年中进行了密集的基础科学、转化和临床研究,但胶质母细胞瘤仍然是一种毁灭性疾病,预后极差。除了将替莫唑胺纳入临床常规治疗外,新型治疗方法在很大程度上都失败了,这强调了需要系统地研究胶质母细胞瘤的治疗耐药性,以确定主要的驱动因素,从而为治疗干预提供潜在的弱点。最近,我们通过整合一系列已建立的人类胶质母细胞瘤细胞系中的放射(化学)治疗后克隆存活数据与低密度转录组谱数据,为系统地鉴定联合模式放化疗治疗弱点提供了概念验证。在这里,我们将这种方法扩展到多个分子水平,包括基因组拷贝数、光谱核型分析、DNA 甲基化和转录组数据。将转录组数据与单个基因水平上的固有治疗耐药性相关联,得出了一些候选基因,这些基因在这方面迄今为止尚未得到充分重视,并且有临床批准的药物可用于这些基因,如雄激素受体 (AR)。基因集富集分析证实了这些结果,并确定了其他基因集,包括活性氧解毒、雷帕霉素复合物 1 (MTORC1) 信号和铁死亡/自噬相关调节回路,这些基因集与胶质母细胞瘤细胞的固有治疗耐药性相关。为了在这些基因集中确定可通过药物治疗的基因,进行了前沿分析,得出了具有硫氧还蛋白/过氧化物酶代谢、谷胱甘肽合成、蛋白质伴侣、脯氨酰羟化、蛋白酶体功能和 DNA 合成/修复功能的候选基因。因此,我们的研究证实了先前为基于机制的多模式胶质母细胞瘤治疗而提名的靶标,为多水平数据集成的工作流程提供了概念验证,并确定了新的候选靶标,这些靶标易于获得药理学抑制剂,其与放射(化学)治疗联合靶向治疗值得进一步研究。此外,我们的研究还表明,所提出的工作流程需要 mRNA 表达数据,而不是基因组拷贝数或 DNA 甲基化数据,因为这些数据水平之间没有严格的相关性。最后,本研究中生成的数据集包括常用胶质母细胞瘤细胞系的功能和多层次分子数据,代表了胶质母细胞瘤治疗耐药性领域其他研究人员的宝贵工具包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1deb/10007763/90d24c0456f7/13014_2023_2241_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验