Suppr超能文献

IRCM-Caps:一种用于 COVID-19 的 X 射线图像检测方法。

IRCM-Caps: An X-ray image detection method for COVID-19.

机构信息

School of Computer Science and Engineering, North Minzu University, Yinchuan, China.

Key Laboratory of Intelligent Information Processing of Image and Graphics, State Ethnic Affairs Commission, Yinchuan, China.

出版信息

Clin Respir J. 2023 May;17(5):364-373. doi: 10.1111/crj.13599. Epub 2023 Mar 15.

Abstract

OBJECTIVE

COVID-19 is ravaging the world, but traditional reverse transcription-polymerase reaction (RT-PCR) tests are time-consuming and have a high false-negative rate and lack of medical equipment. Therefore, lung imaging screening methods are proposed to diagnose COVID-19 due to its fast test speed. Currently, the commonly used convolutional neural network (CNN) model requires a large number of datasets, and the accuracy of the basic capsule network for multiple classification is limital. For this reason, this paper proposes a novel model based on CNN and CapsNet.

METHODS

The proposed model integrates CNN and CapsNet. And attention mechanism module and multi-branch lightweight module are applied to enhance performance. Use the contrast adaptive histogram equalization (CLAHE) algorithm to preprocess the image to enhance image contrast. The preprocessed images are input into the network for training, and ReLU was used as the activation function to adjust the parameters to achieve the optimal.

RESULT

The test dataset includes 1200 X-ray images (400 COVID-19, 400 viral pneumonia, and 400 normal), and we replace CNN of VGG16, InceptionV3, Xception, Inception-Resnet-v2, ResNet50, DenseNet121, and MoblieNetV2 and integrate with CapsNet. Compared with CapsNet, this network improves 6.96%, 7.83%, 9.37%, 10.47%, and 10.38% in accuracy, area under the curve (AUC), recall, and F1 scores, respectively. In the binary classification experiment, compared with CapsNet, the accuracy, AUC, accuracy, recall rate, and F1 score were increased by 5.33%, 5.34%, 2.88%, 8.00%, and 5.56%, respectively.

CONCLUSION

The proposed embedded the advantages of traditional convolutional neural network and capsule network and has a good classification effect on small COVID-19 X-ray image dataset.

摘要

目的

COVID-19 正在肆虐全球,但传统的逆转录-聚合酶链反应(RT-PCR)检测耗时且假阴性率高,且缺乏医疗设备。因此,由于其快速的测试速度,提出了肺部成像筛查方法来诊断 COVID-19。目前,常用的卷积神经网络(CNN)模型需要大量数据集,并且基本胶囊网络的多分类精度有限。为此,本文提出了一种基于 CNN 和 CapsNet 的新模型。

方法

所提出的模型集成了 CNN 和 CapsNet。并应用注意力机制模块和多分支轻量级模块来提高性能。使用对比度自适应直方图均衡(CLAHE)算法对图像进行预处理以增强图像对比度。将预处理后的图像输入网络进行训练,并使用 ReLU 作为激活函数来调整参数以达到最优。

结果

测试数据集包括 1200 张 X 射线图像(400 张 COVID-19、400 张病毒性肺炎和 400 张正常),我们用 VGG16、InceptionV3、Xception、Inception-Resnet-v2、ResNet50、DenseNet121 和 MoblieNetV2 中的 CNN 替换,并与 CapsNet 集成。与 CapsNet 相比,该网络在准确率、曲线下面积(AUC)、召回率和 F1 评分方面分别提高了 6.96%、7.83%、9.37%、10.47%和 10.38%。在二分类实验中,与 CapsNet 相比,准确率、AUC、准确率、召回率和 F1 评分分别提高了 5.33%、5.34%、2.88%、8.00%和 5.56%。

结论

所提出的模型嵌入了传统卷积神经网络和胶囊网络的优势,对小型 COVID-19 X 射线图像数据集具有良好的分类效果。

相似文献

1
IRCM-Caps: An X-ray image detection method for COVID-19.
Clin Respir J. 2023 May;17(5):364-373. doi: 10.1111/crj.13599. Epub 2023 Mar 15.
2
SVD-CLAHE boosting and balanced loss function for Covid-19 detection from an imbalanced Chest X-Ray dataset.
Comput Biol Med. 2022 Nov;150:106092. doi: 10.1016/j.compbiomed.2022.106092. Epub 2022 Sep 28.
3
Application of Imaging Examination Based on Deep Learning in the Diagnosis of Viral Senile Pneumonia.
Contrast Media Mol Imaging. 2022 May 31;2022:6964283. doi: 10.1155/2022/6964283. eCollection 2022.
4
[Research on coronavirus disease 2019 (COVID-19) detection method based on depthwise separable DenseNet in chest X-ray images].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Aug 25;37(4):557-565. doi: 10.7507/1001-5515.202005056.
5
A Cascade-SEME network for COVID-19 detection in chest x-ray images.
Med Phys. 2021 May;48(5):2337-2353. doi: 10.1002/mp.14711. Epub 2021 Mar 29.
6
Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images.
Comput Biol Med. 2021 May;132:104319. doi: 10.1016/j.compbiomed.2021.104319. Epub 2021 Mar 11.
7
CNN-RNN Network Integration for the Diagnosis of COVID-19 Using Chest X-ray and CT Images.
Sensors (Basel). 2023 Jan 25;23(3):1356. doi: 10.3390/s23031356.
8
CBAM VGG16: An efficient driver distraction classification using CBAM embedded VGG16 architecture.
Comput Biol Med. 2024 Sep;180:108945. doi: 10.1016/j.compbiomed.2024.108945. Epub 2024 Aug 1.
9
Hybrid COVID-19 segmentation and recognition framework (HMB-HCF) using deep learning and genetic algorithms.
Artif Intell Med. 2021 Sep;119:102156. doi: 10.1016/j.artmed.2021.102156. Epub 2021 Aug 28.
10
Convolutional capsule network for COVID-19 detection using radiography images.
Int J Imaging Syst Technol. 2021 Jun;31(2):525-539. doi: 10.1002/ima.22566. Epub 2021 Mar 2.

本文引用的文献

1
COVID-19 detection on chest X-ray images using Homomorphic Transformation and VGG inspired deep convolutional neural network.
Biocybern Biomed Eng. 2023 Jan-Mar;43(1):1-16. doi: 10.1016/j.bbe.2022.11.003. Epub 2022 Nov 24.
2
Enhanced framework for COVID-19 prediction with computed tomography scan images using dense convolutional neural network and novel loss function.
Comput Electr Eng. 2023 Jan;105:108479. doi: 10.1016/j.compeleceng.2022.108479. Epub 2022 Nov 14.
3
AVNC: Attention-Based VGG-Style Network for COVID-19 Diagnosis by CBAM.
IEEE Sens J. 2021 Feb 26;22(18):17431-17438. doi: 10.1109/JSEN.2021.3062442. eCollection 2022 Sep.
4
Deep learning models-based CT-scan image classification for automated screening of COVID-19.
Biomed Signal Process Control. 2023 Feb;80:104268. doi: 10.1016/j.bspc.2022.104268. Epub 2022 Sep 30.
5
ChestX-Ray6: Prediction of multiple diseases including COVID-19 from chest X-ray images using convolutional neural network.
Expert Syst Appl. 2023 Jan;211:118576. doi: 10.1016/j.eswa.2022.118576. Epub 2022 Aug 27.
6
CovXmlc: High performance COVID-19 detection on X-ray images using Multi-Model classification.
Biomed Signal Process Control. 2022 Jan;71:103272. doi: 10.1016/j.bspc.2021.103272. Epub 2021 Oct 20.
7
COFE-Net: An ensemble strategy for Computer-Aided Detection for COVID-19.
Measurement (Lond). 2022 Jan;187:110289. doi: 10.1016/j.measurement.2021.110289. Epub 2021 Oct 14.
8
COVID-FACT: A Fully-Automated Capsule Network-Based Framework for Identification of COVID-19 Cases from Chest CT Scans.
Front Artif Intell. 2021 May 25;4:598932. doi: 10.3389/frai.2021.598932. eCollection 2021.
9
Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks.
Pattern Anal Appl. 2021;24(3):1207-1220. doi: 10.1007/s10044-021-00984-y. Epub 2021 May 9.
10
DenseCapsNet: Detection of COVID-19 from X-ray images using a capsule neural network.
Comput Biol Med. 2021 Jun;133:104399. doi: 10.1016/j.compbiomed.2021.104399. Epub 2021 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验