Suppr超能文献

脊髓星形胶质细胞功能障碍导致晚发性脊髓性肌萎缩症运动神经元丢失。

Spinal astrocyte dysfunction drives motor neuron loss in late-onset spinal muscular atrophy.

机构信息

Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.

Department of Pediatrics 1, Division of Neuropediatrics, Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.

出版信息

Acta Neuropathol. 2023 May;145(5):611-635. doi: 10.1007/s00401-023-02554-4. Epub 2023 Mar 17.

Abstract

Spinal muscular atrophy (SMA) is a progressive neuromuscular disorder caused by a loss of the survival of motor neuron 1 (SMN1) gene, resulting in a loss of spinal motor neurons (MNs), leading to muscle weakness and wasting. The pathogenesis of MN loss in SMA and the selective vulnerability in different cellular populations are not fully understood. To investigate the role of spinal astrocytes in the pathogenesis of late-onset SMA, we used a mouse model in addition to in vitro approaches. Immunostaining, Western blot analysis, small interfering ribonucleic acid (siRNA) transfections, functional assays, enzyme-linked immunosorbent assay (ELISA), behavioral tests, and electrophysiological measurements were performed. Early activation of spinal astrocytes and a reduction of the excitatory amino acid transporter 1 (EAAT1) on postnatal day (P) 20 preceded the loss of spinal MNs in SMA mice occurring on P42. EAAT1 reduction resulted in elevated glutamate levels in the spinal cord of SMA mice at P20 and P42. SMA-like astrocytes generated by siRNA and an ex vivo model of glutamate excitotoxicity involving organotypic spinal cord slice cultures revealed the critical role of glutamate homeostasis in the degeneration of MNs. The pre-emptive administration of arundic acid (AA), as an inhibitor of astrocyte activation, to SMA mice prior to the loss of motor neurons (P28) resulted in elevated EAAT1 protein levels compared to vehicle-treated SMA mice and prevented the increase of glutamate in the spinal cord and the loss of spinal MNs. Furthermore, AA preserved motor functions during behavioral experiments, the electrophysiological properties, and muscle alteration of SMA mice. In a translational approach, we transfected healthy human fibroblasts with SMN1 siRNA, resulting in reduced EAAT1 expression and reduced uptake but increased glutamate release. These findings were verified by detecting elevated glutamate levels and reduced levels of EAAT1 in cerebrospinal fluid of untreated SMA type 2 and 3 patients. In addition, glutamate was elevated in serum samples, while EAAT1 was not detectable. Our data give evidence for the crucial role of spinal astrocytes in the pathogenesis of late-onset SMA, a potential driving force for MN loss by glutamate excitotoxicity caused by EAAT1 reduction as an early pathophysiological event. Furthermore, our study introduces EAAT1 as a potential therapeutic target for additional SMN-independent therapy strategies to complement SMN-enhancing drugs.

摘要

脊髓性肌萎缩症(SMA)是一种进行性神经肌肉疾病,由运动神经元 1(SMN1)基因缺失引起,导致脊髓运动神经元(MN)丢失,导致肌肉无力和萎缩。SMA 中 MN 丢失的发病机制和不同细胞群体的选择性易损性尚未完全阐明。为了研究脊髓星形胶质细胞在晚发性 SMA 发病机制中的作用,我们除了使用体外方法外,还使用了小鼠模型。进行免疫染色、Western blot 分析、小干扰核糖核酸(siRNA)转染、功能测定、酶联免疫吸附测定(ELISA)、行为测试和电生理测量。在 SMA 小鼠 P42 时发生的脊髓 MN 丢失之前,P20 时脊髓星形胶质细胞的早期激活和兴奋性氨基酸转运体 1(EAAT1)减少。SMA 小鼠 P20 和 P42 时脊髓中的 EAAT1 减少导致谷氨酸水平升高。通过 siRNA 产生的 SMA 样星形胶质细胞和涉及器官型脊髓切片培养的体外谷氨酸兴奋性毒性模型揭示了谷氨酸稳态在 MN 退化中的关键作用。在运动神经元丢失之前(P28),将作为星形胶质细胞激活抑制剂的阿仑珠单抗(AA)预先给予 SMA 小鼠,与 vehicle 处理的 SMA 小鼠相比,EAAT1 蛋白水平升高,并防止脊髓中谷氨酸增加和脊髓 MN 丢失。此外,AA 可在行为实验期间维持 SMA 小鼠的运动功能、电生理特性和肌肉改变。在转化方法中,我们用 SMN1 siRNA 转染健康的人成纤维细胞,导致 EAAT1 表达和摄取减少,但谷氨酸释放增加。通过检测未经治疗的 SMA 2 型和 3 型患者脑脊液中谷氨酸水平升高和 EAAT1 水平降低,验证了这些发现。此外,血清样本中的谷氨酸升高,而 EAAT1 无法检测到。我们的数据为脊髓星形胶质细胞在晚发性 SMA 发病机制中的关键作用提供了证据,谷氨酸兴奋性毒性导致 EAAT1 减少作为早期病理生理事件是 MN 丢失的潜在驱动力。此外,我们的研究将 EAAT1 作为一种潜在的治疗靶点,用于补充 SMN 增强药物的额外 SMN 独立治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59a1/10119066/a2a4871979de/401_2023_2554_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验