Salekin Md Sirajus, Zamzmi Ghada, Goldgof Dmitry, Mouton Peter R, Anand Kanwaljeet J S, Ashmeade Terri, Prescott Stephanie, Huang Yangxin, Sun Yu
University of South Florida, Tampa, FL, USA.
SRC Biosciences, Tampa, FL, USA.
Med Image Comput Comput Assist Interv. 2022 Sep;13433:749-759. doi: 10.1007/978-3-031-16437-8_72. Epub 2022 Sep 16.
Artificial Intelligence (AI)-based methods allow for automatic assessment of pain intensity based on continuous monitoring and processing of subtle changes in sensory signals, including facial expression, body movements, and crying frequency. Currently, there is a large and growing need for expanding current AI-based approaches to the assessment of postoperative pain in the neonatal intensive care unit (NICU). In contrast to acute procedural pain in the clinic, the NICU has neonates emerging from postoperative sedation, usually intubated, and with variable energy reserves for manifesting forceful pain responses. Here, we present a novel multi-modal approach designed, developed, and validated for assessment of neonatal postoperative pain in the challenging NICU setting. Our approach includes a robust network capable of efficient reconstruction of missing modalities (e.g., obscured facial expression due to intubation) using an unsupervised spatio-temporal feature learning with a generative model for learning the joint features. Our approach generates the final pain score along with the intensity using an attentional cross-modal feature fusion. Using experimental dataset from postoperative neonates in the NICU, our pain assessment approach achieves superior performance (AUC 0.906, accuracy 0.820) as compared to the state-of-the-art approaches.
基于人工智能(AI)的方法允许根据对感觉信号细微变化的持续监测和处理来自动评估疼痛强度,这些感觉信号包括面部表情、身体动作和哭闹频率。目前,对于将当前基于AI的方法扩展到新生儿重症监护病房(NICU)术后疼痛评估方面,存在着巨大且不断增长的需求。与临床上的急性程序性疼痛不同,NICU中的新生儿是从术后镇静状态苏醒过来,通常处于插管状态,并且表现出强烈疼痛反应的能量储备各不相同。在此,我们提出了一种新颖的多模态方法,该方法是为在具有挑战性的NICU环境中评估新生儿术后疼痛而设计、开发和验证的。我们的方法包括一个强大的网络,该网络能够使用无监督的时空特征学习和生成模型来学习联合特征,从而有效地重建缺失的模态(例如,由于插管导致面部表情模糊)。我们的方法使用注意力跨模态特征融合生成最终的疼痛评分以及强度。与最先进的方法相比,使用来自NICU术后新生儿的实验数据集,我们的疼痛评估方法具有卓越的性能(AUC为0.906,准确率为0.820)。