Suppr超能文献

用于新生儿术后疼痛评估的注意力生成多模态网络

Attentional Generative Multimodal Network for Neonatal Postoperative Pain Estimation.

作者信息

Salekin Md Sirajus, Zamzmi Ghada, Goldgof Dmitry, Mouton Peter R, Anand Kanwaljeet J S, Ashmeade Terri, Prescott Stephanie, Huang Yangxin, Sun Yu

机构信息

University of South Florida, Tampa, FL, USA.

SRC Biosciences, Tampa, FL, USA.

出版信息

Med Image Comput Comput Assist Interv. 2022 Sep;13433:749-759. doi: 10.1007/978-3-031-16437-8_72. Epub 2022 Sep 16.

Abstract

Artificial Intelligence (AI)-based methods allow for automatic assessment of pain intensity based on continuous monitoring and processing of subtle changes in sensory signals, including facial expression, body movements, and crying frequency. Currently, there is a large and growing need for expanding current AI-based approaches to the assessment of postoperative pain in the neonatal intensive care unit (NICU). In contrast to acute procedural pain in the clinic, the NICU has neonates emerging from postoperative sedation, usually intubated, and with variable energy reserves for manifesting forceful pain responses. Here, we present a novel multi-modal approach designed, developed, and validated for assessment of neonatal postoperative pain in the challenging NICU setting. Our approach includes a robust network capable of efficient reconstruction of missing modalities (e.g., obscured facial expression due to intubation) using an unsupervised spatio-temporal feature learning with a generative model for learning the joint features. Our approach generates the final pain score along with the intensity using an attentional cross-modal feature fusion. Using experimental dataset from postoperative neonates in the NICU, our pain assessment approach achieves superior performance (AUC 0.906, accuracy 0.820) as compared to the state-of-the-art approaches.

摘要

基于人工智能(AI)的方法允许根据对感觉信号细微变化的持续监测和处理来自动评估疼痛强度,这些感觉信号包括面部表情、身体动作和哭闹频率。目前,对于将当前基于AI的方法扩展到新生儿重症监护病房(NICU)术后疼痛评估方面,存在着巨大且不断增长的需求。与临床上的急性程序性疼痛不同,NICU中的新生儿是从术后镇静状态苏醒过来,通常处于插管状态,并且表现出强烈疼痛反应的能量储备各不相同。在此,我们提出了一种新颖的多模态方法,该方法是为在具有挑战性的NICU环境中评估新生儿术后疼痛而设计、开发和验证的。我们的方法包括一个强大的网络,该网络能够使用无监督的时空特征学习和生成模型来学习联合特征,从而有效地重建缺失的模态(例如,由于插管导致面部表情模糊)。我们的方法使用注意力跨模态特征融合生成最终的疼痛评分以及强度。与最先进的方法相比,使用来自NICU术后新生儿的实验数据集,我们的疼痛评估方法具有卓越的性能(AUC为0.906,准确率为0.820)。

相似文献

1
Attentional Generative Multimodal Network for Neonatal Postoperative Pain Estimation.
Med Image Comput Comput Assist Interv. 2022 Sep;13433:749-759. doi: 10.1007/978-3-031-16437-8_72. Epub 2022 Sep 16.
2
Multimodal spatio-temporal deep learning approach for neonatal postoperative pain assessment.
Comput Biol Med. 2021 Feb;129:104150. doi: 10.1016/j.compbiomed.2020.104150. Epub 2020 Nov 28.
3
Towards robust multimodal ultrasound classification for liver tumor diagnosis: A generative approach to modality missingness.
Comput Methods Programs Biomed. 2025 Jun;265:108759. doi: 10.1016/j.cmpb.2025.108759. Epub 2025 Mar 30.
4
Accurate Neonatal Face Detection for Improved Pain Classification in the Challenging NICU Setting.
IEEE Access. 2024;12:49122-49133. doi: 10.1109/access.2024.3383789. Epub 2024 Apr 1.
5
Future roles of artificial intelligence in early pain management of newborns.
Paediatr Neonatal Pain. 2021 Aug 5;3(3):134-145. doi: 10.1002/pne2.12060. eCollection 2021 Sep.
6
Multimodal Pain Recognition in Postoperative Patients: Machine Learning Approach.
JMIR Form Res. 2025 Jan 27;9:e67969. doi: 10.2196/67969.
9
Multimodal neonatal procedural and postoperative pain assessment dataset.
Data Brief. 2021 Jan 26;35:106796. doi: 10.1016/j.dib.2021.106796. eCollection 2021 Apr.
10
MMAgentRec, a personalized multi-modal recommendation agent with large language model.
Sci Rep. 2025 Apr 8;15(1):12062. doi: 10.1038/s41598-025-96458-w.

引用本文的文献

1
Clinical rating scales for assessing pain in newborn infants.
Cochrane Database Syst Rev. 2025 Apr 14;4(4):MR000064. doi: 10.1002/14651858.MR000064.pub2.
2
Role of Artificial Intelligence in the Assessment of Postoperative Pain in the Pediatric Population: A Systematic Review.
Cureus. 2025 Jan 7;17(1):e77074. doi: 10.7759/cureus.77074. eCollection 2025 Jan.

本文引用的文献

1
Future roles of artificial intelligence in early pain management of newborns.
Paediatr Neonatal Pain. 2021 Aug 5;3(3):134-145. doi: 10.1002/pne2.12060. eCollection 2021 Sep.
2
Multimodal neonatal procedural and postoperative pain assessment dataset.
Data Brief. 2021 Jan 26;35:106796. doi: 10.1016/j.dib.2021.106796. eCollection 2021 Apr.
3
Multimodal spatio-temporal deep learning approach for neonatal postoperative pain assessment.
Comput Biol Med. 2021 Feb;129:104150. doi: 10.1016/j.compbiomed.2020.104150. Epub 2020 Nov 28.
4
Variational AutoEncoder For Regression: Application to Brain Aging Analysis.
Med Image Comput Comput Assist Interv. 2019 Oct;11765:823-831. doi: 10.1007/978-3-030-32245-8_91. Epub 2019 Oct 10.
5
A Review of Automated Pain Assessment in Infants: Features, Classification Tasks, and Databases.
IEEE Rev Biomed Eng. 2018;11:77-96. doi: 10.1109/RBME.2017.2777907. Epub 2017 Nov 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验