Suppr超能文献

TCMFP:一种基于网络靶点评分与半监督学习遗传算法相结合的新型中药配方预测方法。

TCMFP: a novel herbal formula prediction method based on network target's score integrated with semi-supervised learning genetic algorithms.

机构信息

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.

Institute of Information on Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.

出版信息

Brief Bioinform. 2023 May 19;24(3). doi: 10.1093/bib/bbad102.

Abstract

Traditional Chinese medicine (TCM) has accumulated thousands years of knowledge in herbal therapy, but the use of herbal formulas is still characterized by reliance on personal experience. Due to the complex mechanism of herbal actions, it is challenging to discover effective herbal formulas for diseases by integrating the traditional experiences and modern pharmacological mechanisms of multi-target interactions. In this study, we propose a herbal formula prediction approach (TCMFP) combined therapy experience of TCM, artificial intelligence and network science algorithms to screen optimal herbal formula for diseases efficiently, which integrates a herb score (Hscore) based on the importance of network targets, a pair score (Pscore) based on empirical learning and herbal formula predictive score (FmapScore) based on intelligent optimization and genetic algorithm. The validity of Hscore, Pscore and FmapScore was verified by functional similarity and network topological evaluation. Moreover, TCMFP was used successfully to generate herbal formulae for three diseases, i.e. the Alzheimer's disease, asthma and atherosclerosis. Functional enrichment and network analysis indicates the efficacy of targets for the predicted optimal herbal formula. The proposed TCMFP may provides a new strategy for the optimization of herbal formula, TCM herbs therapy and drug development.

摘要

中医药(TCM)在草药疗法方面积累了数千年的知识,但草药配方的使用仍然以个人经验为特征。由于草药作用的复杂机制,通过整合传统经验和现代多靶点相互作用的药理学机制,发现针对疾病的有效草药配方具有挑战性。在这项研究中,我们提出了一种结合中医药治疗经验、人工智能和网络科学算法的草药配方预测方法(TCMFP),以高效筛选针对疾病的最佳草药配方,该方法整合了基于网络靶点重要性的草药评分(Hscore)、基于经验学习的对评分(Pscore)和基于智能优化和遗传算法的草药配方预测评分(FmapScore)。通过功能相似性和网络拓扑评估验证了 Hscore、Pscore 和 FmapScore 的有效性。此外,TCMFP 成功地为三种疾病(阿尔茨海默病、哮喘和动脉粥样硬化)生成了草药配方。功能富集和网络分析表明了预测最佳草药配方的目标的疗效。所提出的 TCMFP 可能为草药配方的优化、中医药草药治疗和药物开发提供了一种新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验