Suppr超能文献

Vina-GPU 2.0:利用图形处理器进一步加速自动对接Vina及其衍生工具

Vina-GPU 2.0: Further Accelerating AutoDock Vina and Its Derivatives with Graphics Processing Units.

作者信息

Ding Ji, Tang Shidi, Mei Zheming, Wang Lingyue, Huang Qinqin, Hu Haifeng, Ling Ming, Wu Jiansheng

机构信息

School of Geographic and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.

Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, Nanjing 210023, China.

出版信息

J Chem Inf Model. 2023 Apr 10;63(7):1982-1998. doi: 10.1021/acs.jcim.2c01504. Epub 2023 Mar 20.

Abstract

Modern drug discovery typically faces large virtual screens from huge compound databases where multiple docking tools are involved for meeting various real scenes or improving the precision of virtual screens. Among these tools, AutoDock Vina and its numerous derivatives are the most popular and have become the standard pipeline for molecular docking in modern drug discovery. Our recent Vina-GPU method realized 14-fold acceleration against AutoDock Vina on a piece of NVIDIA RTX 3090 GPU in one virtual screening case. Further speedup of AutoDock Vina and its derivatives with graphics processing units (GPUs) is beneficial to systematically push their popularization in large-scale virtual screens due to their high benefit-cost ratio and easy operation for users. Thus, we proposed the Vina-GPU 2.0 method to further accelerate AutoDock Vina and the most common derivatives with new docking algorithms (QuickVina 2 and QuickVina-W) with GPUs. Caused by the discrepancy in their docking algorithms, our Vina-GPU 2.0 adopts different GPU acceleration strategies. In virtual screening for two hot protein kinase targets, RIPK1 and RIPK3, from the DrugBank database, our Vina-GPU 2.0 reaches an average of 65.6-fold, 1.4-fold, and 3.6-fold docking acceleration against the original AutoDock Vina, QuickVina 2, and QuickVina-W while ensuring their comparable docking accuracy. In addition, we develop a friendly and installation-free graphical user interface tool for their convenient usage. The codes and tools of Vina-GPU 2.0 are freely available at https://github.com/DeltaGroupNJUPT/Vina-GPU-2.0, coupled with explicit instructions and examples.

摘要

现代药物发现通常面临来自庞大化合物数据库的大型虚拟筛选,其中涉及多种对接工具以满足各种实际场景或提高虚拟筛选的精度。在这些工具中,AutoDock Vina及其众多衍生工具最为流行,并已成为现代药物发现中分子对接的标准流程。我们最近的Vina-GPU方法在一个虚拟筛选案例中,在一块NVIDIA RTX 3090 GPU上实现了比AutoDock Vina快14倍的加速。由于其高性价比和对用户操作简便,使用图形处理单元(GPU)进一步加速AutoDock Vina及其衍生工具,有利于在大规模虚拟筛选中系统地推广它们。因此,我们提出了Vina-GPU 2.0方法,以使用新的对接算法(QuickVina 2和QuickVina-W)和GPU进一步加速AutoDock Vina及其最常见的衍生工具。由于它们对接算法的差异,我们的Vina-GPU 2.0采用了不同的GPU加速策略。在对DrugBank数据库中两个热门蛋白激酶靶点RIPK1和RIPK3进行虚拟筛选时,我们的Vina-GPU 2.0在确保对接精度可比的情况下,相对于原始的AutoDock Vina、QuickVina 2和QuickVina-W,平均实现了65.6倍、1.4倍和3.6倍的对接加速。此外,我们开发了一个友好且无需安装的图形用户界面工具,便于使用。Vina-GPU 2.0的代码和工具可在https://github.com/DeltaGroupNJUPT/Vina-GPU-2.0上免费获取,并附有明确的说明和示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验