da Silva Gabriel Rodrigues, Rosmaninho Igor Batista, Zancul Eduardo, de Oliveira Vanessa Rita, Francisco Gabriela Rodrigues, Dos Santos Nathamy Fernanda, de Mello Macêdo Karin, da Silva Amauri José, de Lima Érika Knabben, Lemo Mara Elisa Borsato, Maldonado Alessandra, Moura Maria Emilia G, da Silva Flávia Helena, Guimarães Gustavo Stuani
University of São Paulo, School of Engineering, Av. Prof. Luciano Gualberto, 1380, Cidade Universitária, São Paulo-SP, 05508-010, Brazil.
Grupo Fleury - Clinical Analysis, Av. Morumbi, 8860, São Paulo-SP, Brazil.
Data Brief. 2023 Mar 2;47:109034. doi: 10.1016/j.dib.2023.109034. eCollection 2023 Apr.
Recent advancements in image analysis and interpretation technologies using computer vision techniques have shown potential for novel applications in clinical microbiology laboratories to support task automation aiming for faster and more reliable diagnostics. Deep learning models can be a valuable tool in the screening process, helping technicians spend less time classifying no-growth results and quickly separating the categories of tests that deserve further analysis. In this context, creating datasets with correctly classified images is fundamental for developing and improving such models. Therefore, a dataset of urine test Petri dishes images was collected following a standardized process, with controlled conditions of positioning and lighting. Image acquisition was conducted by applying a hardware chamber equipped with a led lightning source and a smartphone camera with 12 MP resolution. A software application was developed to support image classification and handling. Experienced microbiologists classified the images according to the positive, negative, and uncertain test results. The resulting dataset contains a total of 1500 images and can support the development of deep learning algorithms to classify urine exams according to their microbial growth.
利用计算机视觉技术的图像分析与解读技术的最新进展已显示出在临床微生物学实验室中的新应用潜力,以支持旨在实现更快、更可靠诊断的任务自动化。深度学习模型在筛选过程中可以成为一种有价值的工具,帮助技术人员减少对无生长结果进行分类的时间,并快速区分值得进一步分析的测试类别。在这种背景下,创建具有正确分类图像的数据集对于开发和改进此类模型至关重要。因此,按照标准化流程收集了尿样检测培养皿图像的数据集,对定位和光照条件进行了控制。通过应用配备有LED光源和1200万像素分辨率智能手机摄像头的硬件腔室进行图像采集。开发了一个软件应用程序来支持图像分类和处理。经验丰富的微生物学家根据阳性、阴性和不确定的检测结果对图像进行分类。所得数据集总共包含1500张图像,可支持开发深度学习算法以根据尿液检查的微生物生长情况进行分类。