Suppr超能文献

一项回顾性研究,旨在评估海氏法则、药物性肝损伤急性肝衰竭(DrILTox ALF)评分、罗伯斯-迪亚兹模型以及一种新的逻辑回归模型对中国药物性肝损伤患者急性肝衰竭的预测能力。

A retrospective study to evaluate Hy's Law, DrILTox ALF score, Robles-Diaz model, and a new logistic regression model for predicting acute liver failure in Chinese patients with drug-induced liver injury.

作者信息

Xiong Xiaomei, Xu Qing, Wang Bin

机构信息

Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai, China.

Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.

出版信息

Expert Opin Drug Saf. 2024 Feb;23(2):207-211. doi: 10.1080/14740338.2023.2195624. Epub 2023 Mar 28.

Abstract

OBJECTIVES

To evaluate Hy's law, DrILTox ALF Score, Robles-Diaz Model, and a new logistic regression model for predicting acute liver failure (ALF) in Chinese patients with drug-induced liver injury (DILI).

METHODS

We conducted a retrospective study among 514 hospitalized DILI patients from 2011 to 2020. Logistic regression analysis was used to develop a predictive model for ALF. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of these models were compared. Another 304 DILI patients were used for external validation.

OUTCOMES

Twenty-six of 514 DILI patients progressed to ALF. Among these models, Hy's law had 84.6% sensitivity, 59.8% specificity, 10.1% PPV, and 98.6% NPV. DrILTox ALF Score had 92.3% sensitivity, 51.8% specificity, 9.3% PPV, and 99.2% NPV, while Robles-Diaz Model had 50.0% sensitivity, 77.7% specificity, 10.7% PPV, and 96.7% NPV. The logistic regression model described as  = 1/(1+e ) had 88.5% sensitivity, 73.1% specificity, 16.3% PPV, and 99.1% NPV at the cut-off of 0.04778 and kept 94.4% sensitivity, 66.8% specificity, 15.2% PPV, and 99.5% NPV in external validation.

CONCLUSIONS

The logistic regression model provided superior performance than Hy's law, DrILTox ALF Score, and Robles-Diaz Model for predicting DILI -related ALF.

摘要

目的

评估海氏法则、DrILTox急性肝衰竭评分、罗伯斯 - 迪亚兹模型以及一种新的逻辑回归模型对中国药物性肝损伤(DILI)患者急性肝衰竭(ALF)的预测能力。

方法

我们对2011年至2020年期间514例住院DILI患者进行了一项回顾性研究。采用逻辑回归分析建立ALF预测模型。比较这些模型的敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。另外304例DILI患者用于外部验证。

结果

514例DILI患者中有26例进展为ALF。在这些模型中,海氏法则的敏感性为84.6%,特异性为59.8%,PPV为10.1%,NPV为98.6%。DrILTox急性肝衰竭评分的敏感性为92.3%,特异性为51.8%,PPV为9.3%,NPV为99.2%,而罗伯斯 - 迪亚兹模型的敏感性为50.0%,特异性为77.7%,PPV为10.7%,NPV为96.7%。逻辑回归模型(描述为=1/(1 + e))在截断值为0.04778时敏感性为88.5%,特异性为73.1%,PPV为16.3%,NPV为99.1%,在外部验证中保持敏感性为94.4%,特异性为66.8%,PPV为15.2%,NPV为99.5%。

结论

在预测DILI相关的ALF方面,逻辑回归模型比海氏法则、DrILTox急性肝衰竭评分和罗伯斯 - 迪亚兹模型具有更优的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验