Suppr超能文献

多组学分析和 CRISPR 扰动筛选确定了冠心病的血管内皮细胞程序和新的治疗靶点。

Multiomic Analysis and CRISPR Perturbation Screens Identify Endothelial Cell Programs and Novel Therapeutic Targets for Coronary Artery Disease.

机构信息

Divisions of Genetics and Cardiology, Department of Medicine, Brigham and Women's Hospital, Boston MA (R.M.G., G.R.S., S.F., V.S.L.-K., A.B.).

Broad Institute of MIT and Harvard, Cambridge, MA (R.M.G., G.R.S., S.F., V.S.L.-K., A.B.).

出版信息

Arterioscler Thromb Vasc Biol. 2023 May;43(5):600-608. doi: 10.1161/ATVBAHA.123.318328. Epub 2023 Mar 30.

Abstract

Endothelial cells (EC) are an important mediator of atherosclerosis and vascular disease. Their exposure to atherogenic risk factors such as hypertension and serum cholesterol leads to endothelial dysfunction and many disease-associated processes. Identifying which of these multiple EC functions is causally related to disease risk has been challenging. There is evidence from in vivo models and human sequencing studies that dysregulation of nitric oxide production directly affects risk of coronary artery disease. Human genetics can help prioritize the other EC functions with causal relationships because germline mutations are acquired at birth and serve as a randomized test of which pathways affect disease risk. Though several coronary artery disease risk variants have been linked to EC function, this process has been slow and laborious. Unbiased analyses of EC dysfunction using multiomic approaches promise to identify the causal genetic mechanisms responsible for vascular disease. Here, we review the data from genomic, epigenomic, and transcriptomic studies that prioritize EC-specific causal pathways. New methods that CRISPR (clustered regularly interspaced short palindromic repeats) perturbation technology with genomic, epigenomic, and transcriptomic analysis promise to speed up the characterization of disease-associated genetic variation. We summarize several recent studies in ECs which use high-throughput genetic perturbation to identify disease-relevant pathways and novel mechanisms of disease. These genetically validated pathways can accelerate the identification of drug targets for the prevention and treatment of atherosclerosis.

摘要

内皮细胞 (EC) 是动脉粥样硬化和血管疾病的重要介质。它们暴露于高血压和血清胆固醇等动脉粥样硬化风险因素会导致内皮功能障碍和许多与疾病相关的过程。确定这些多种 EC 功能中的哪一种与疾病风险有因果关系一直具有挑战性。体内模型和人类测序研究的证据表明,一氧化氮产生的失调直接影响冠心病的风险。人类遗传学可以帮助确定具有因果关系的其他 EC 功能,因为种系突变是在出生时获得的,并且可以随机测试哪些途径会影响疾病风险。尽管已经有几种冠心病风险变异与 EC 功能相关联,但这一过程一直缓慢而费力。使用多组学方法对 EC 功能障碍进行无偏分析有望确定导致血管疾病的因果遗传机制。在这里,我们回顾了来自基因组、表观基因组和转录组研究的数据,这些研究优先考虑了 EC 特异性的因果途径。CRISPR(成簇规律间隔短回文重复)干扰技术与基因组、表观基因组和转录组分析相结合的新方法有望加快与疾病相关的遗传变异的特征描述。我们总结了 EC 中使用高通量遗传干扰来识别与疾病相关的途径和疾病新机制的几项最近的研究。这些经过基因验证的途径可以加速确定预防和治疗动脉粥样硬化的药物靶点。

相似文献

1
Multiomic Analysis and CRISPR Perturbation Screens Identify Endothelial Cell Programs and Novel Therapeutic Targets for Coronary Artery Disease.
Arterioscler Thromb Vasc Biol. 2023 May;43(5):600-608. doi: 10.1161/ATVBAHA.123.318328. Epub 2023 Mar 30.
2
The Role of Endothelial Cells in Atherosclerosis: Insights from Genetic Association Studies.
Am J Pathol. 2024 Apr;194(4):499-509. doi: 10.1016/j.ajpath.2023.09.012. Epub 2023 Oct 10.
3
Multimodal CRISPR perturbations of GWAS loci associated with coronary artery disease in vascular endothelial cells.
PLoS Genet. 2023 Mar 16;19(3):e1010680. doi: 10.1371/journal.pgen.1010680. eCollection 2023 Mar.
4
Coronary Artery Disease Risk Variant Dampens the Expression of CALCRL by Reducing HSF Binding to Shear Stress Responsive Enhancer in Endothelial Cells In Vitro.
Arterioscler Thromb Vasc Biol. 2024 Jun;44(6):1330-1345. doi: 10.1161/ATVBAHA.123.318964. Epub 2024 Apr 11.
5
The Gene at the 15q26 Coronary-Artery-Disease Locus Inhibits Atherosclerosis.
Circ Res. 2022 Dec 2;131(12):1004-1017. doi: 10.1161/CIRCRESAHA.122.321146. Epub 2022 Nov 2.
6
Exercise training and vascular cell phenotype in a swine model of familial hypercholesterolaemia: conduit arteries and veins.
Exp Physiol. 2014 Feb;99(2):454-65. doi: 10.1113/expphysiol.2013.075838. Epub 2013 Nov 8.
7
Notch activation induces endothelial cell senescence and pro-inflammatory response: implication of Notch signaling in atherosclerosis.
Atherosclerosis. 2012 Dec;225(2):296-303. doi: 10.1016/j.atherosclerosis.2012.04.010. Epub 2012 May 18.
8
Identification of a molecular signaling gene-gene regulatory network between GWAS susceptibility genes ADTRP and MIA3/TANGO1 for coronary artery disease.
Biochim Biophys Acta Mol Basis Dis. 2017 Jun;1863(6):1640-1653. doi: 10.1016/j.bbadis.2017.03.010. Epub 2017 Mar 21.
9
Aging-Associated miR-217 Aggravates Atherosclerosis and Promotes Cardiovascular Dysfunction.
Arterioscler Thromb Vasc Biol. 2020 Oct;40(10):2408-2424. doi: 10.1161/ATVBAHA.120.314333. Epub 2020 Aug 27.

引用本文的文献

1
Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics.
Circ Res. 2024 Jun 7;134(12):1681-1702. doi: 10.1161/CIRCRESAHA.124.323672. Epub 2024 Jun 6.
2
Building Synthetic Cells─From the Technology Infrastructure to Cellular Entities.
ACS Synth Biol. 2024 Apr 19;13(4):974-997. doi: 10.1021/acssynbio.3c00724. Epub 2024 Mar 26.
3
Beyond the Basics: Unraveling the Complexity of Coronary Artery Calcification.
Cells. 2023 Dec 12;12(24):2822. doi: 10.3390/cells12242822.
4
The Genetics of Coronary Artery Disease: A Vascular Perspective.
Cells. 2023 Sep 8;12(18):2232. doi: 10.3390/cells12182232.

本文引用的文献

1
Multimodal CRISPR perturbations of GWAS loci associated with coronary artery disease in vascular endothelial cells.
PLoS Genet. 2023 Mar 16;19(3):e1010680. doi: 10.1371/journal.pgen.1010680. eCollection 2023 Mar.
2
Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants.
Nat Genet. 2022 Dec;54(12):1803-1815. doi: 10.1038/s41588-022-01233-6. Epub 2022 Dec 6.
3
A mechanistic framework for cardiometabolic and coronary artery diseases.
Nat Cardiovasc Res. 2022 Jan;1(1):85-100. doi: 10.1038/s44161-021-00009-1. Epub 2022 Jan 12.
4
Large-scale genome-wide association study of coronary artery disease in genetically diverse populations.
Nat Med. 2022 Aug;28(8):1679-1692. doi: 10.1038/s41591-022-01891-3. Epub 2022 Aug 1.
5
Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq.
Cell. 2022 Jul 7;185(14):2559-2575.e28. doi: 10.1016/j.cell.2022.05.013. Epub 2022 Jun 9.
6
Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk.
Nat Genet. 2022 Jun;54(6):804-816. doi: 10.1038/s41588-022-01069-0. Epub 2022 May 19.
7
Single-cell eQTL models reveal dynamic T cell state dependence of disease loci.
Nature. 2022 Jun;606(7912):120-128. doi: 10.1038/s41586-022-04713-1. Epub 2022 May 11.
8
Causal Gene Confusion: The Complicated Locus for Coronary Artery Disease.
Arterioscler Thromb Vasc Biol. 2022 May;42(5):610-612. doi: 10.1161/ATVBAHA.122.317539. Epub 2022 Apr 7.
9
Transcriptome-wide association study of coronary artery disease identifies novel susceptibility genes.
Basic Res Cardiol. 2022 Feb 17;117(1):6. doi: 10.1007/s00395-022-00917-8.
10
Single-Cell RNA Sequencing and Assay for Transposase-Accessible Chromatin Using Sequencing Reveals Cellular and Molecular Dynamics of Aortic Aging in Mice.
Arterioscler Thromb Vasc Biol. 2022 Feb;42(2):156-171. doi: 10.1161/ATVBAHA.121.316883. Epub 2021 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验