Suppr超能文献

发育中小鼠脑周围脑膜蛛网膜屏障的形成和功能。

Formation and function of the meningeal arachnoid barrier around the developing mouse brain.

机构信息

University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA.

University of Colorado Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA; University of Colorado Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO 80045, USA.

出版信息

Dev Cell. 2023 Apr 24;58(8):635-644.e4. doi: 10.1016/j.devcel.2023.03.005. Epub 2023 Mar 29.

Abstract

The arachnoid barrier, a component of the blood-cerebrospinal fluid barrier (B-CSFB) in the meninges, is composed of epithelial-like, tight-junction-expressing cells. Unlike other central nervous system (CNS) barriers, its' developmental mechanisms and timing are largely unknown. Here, we show that mouse arachnoid barrier cell specification requires the repression of Wnt-β-catenin signaling and that constitutively active β-catenin can prevent its formation. We also show that the arachnoid barrier is functional prenatally and, in its absence, a small molecular weight tracer and the bacterium group B Streptococcus can cross into the CNS following peripheral injection. Acquisition of barrier properties prenatally coincides with the junctional localization of Claudin 11, and increased E-cadherin and maturation continues after birth, where postnatal expansion is marked by proliferation and re-organization of junctional domains. This work identifies fundamental mechanisms that drive arachnoid barrier formation, highlights arachnoid barrier fetal functions, and provides novel tools for future studies on CNS barrier development.

摘要

蛛网膜屏障是脑膜中血脑屏障(B-CSFB)的组成部分,由上皮样、紧密连接表达细胞组成。与其他中枢神经系统(CNS)屏障不同,其发育机制和时间尚不清楚。在这里,我们表明,小鼠蛛网膜屏障细胞的特化需要抑制 Wnt-β-catenin 信号,而组成性激活的β-catenin 可以阻止其形成。我们还表明,蛛网膜屏障在产前是有功能的,并且在其缺失的情况下,小分子量示踪剂和 B 组链球菌可以在周围注射后穿过中枢神经系统。产前获得屏障特性与 Claudin 11 的连接定位一致,出生后 E-钙黏蛋白增加和成熟继续,出生后扩张的标志是连接域的增殖和重组。这项工作确定了驱动蛛网膜屏障形成的基本机制,强调了蛛网膜屏障的胎儿功能,并为未来的中枢神经系统屏障发育研究提供了新的工具。

相似文献

1
Formation and function of the meningeal arachnoid barrier around the developing mouse brain.
Dev Cell. 2023 Apr 24;58(8):635-644.e4. doi: 10.1016/j.devcel.2023.03.005. Epub 2023 Mar 29.
2
Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease.
Front Cell Neurosci. 2021 Jul 1;15:703944. doi: 10.3389/fncel.2021.703944. eCollection 2021.
3
Involvement of Claudin-11 in Disruption of Blood-Brain, -Spinal Cord, and -Arachnoid Barriers in Multiple Sclerosis.
Mol Neurobiol. 2019 Mar;56(3):2039-2056. doi: 10.1007/s12035-018-1207-5. Epub 2018 Jul 8.
4
Commentary on "Structural characterization of SLYM - a 4th meningeal membrane".
Fluids Barriers CNS. 2024 Sep 9;21(1):69. doi: 10.1186/s12987-024-00568-y.
5
Structure and Junctional Complexes of Endothelial, Epithelial and Glial Brain Barriers.
Int J Mol Sci. 2019 Oct 29;20(21):5372. doi: 10.3390/ijms20215372.
8
Junctions in the meninges and marginal glia.
J Comp Neurol. 1975 Nov 15;164(2):127-69. doi: 10.1002/cne.901640202.

引用本文的文献

1
Apelin as a CNS-specific pathway for fenestrated capillary formation in the choroid plexus.
Nat Commun. 2025 Aug 19;16(1):7729. doi: 10.1038/s41467-025-63003-2.
3
Cell atlas of the developing human meninges reveals a dura origin of meningioma.
bioRxiv. 2025 Jul 13:2025.07.08.663122. doi: 10.1101/2025.07.08.663122.
5
Harnessing the circadian nature of the choroid plexus and cerebrospinal fluid.
NPJ Biol Timing Sleep. 2025;2(1):19. doi: 10.1038/s44323-025-00033-5. Epub 2025 May 26.
6
Leptomeningeal Neural Organoid Fusions as Models to Study Meninges-Brain Signaling.
Stem Cells Dev. 2025 Apr;34(7-8):152-163. doi: 10.1089/scd.2024.0231. Epub 2025 Mar 24.
7
Immune control of brain physiology.
Nat Rev Immunol. 2025 Jan 31. doi: 10.1038/s41577-025-01129-6.
8
Reimagining the meninges from a neuroimmune perspective: a boundary, but not peripheral.
J Neuroinflammation. 2024 Nov 15;21(1):299. doi: 10.1186/s12974-024-03286-2.
10
Advances and controversies in meningeal biology.
Nat Neurosci. 2024 Nov;27(11):2056-2072. doi: 10.1038/s41593-024-01701-8. Epub 2024 Sep 27.

本文引用的文献

1
3
Mechanisms of group B -mediated preterm birth: lessons learnt from animal models.
Reprod Fertil. 2022 Jun 7;3(3):R109-R120. doi: 10.1530/RAF-21-0105. eCollection 2022 Jul 1.
4
Techniques for visualizing fibroblast-vessel interactions in the developing and adult CNS.
Neurophotonics. 2022 Apr;9(2):021911. doi: 10.1117/1.NPh.9.2.021911. Epub 2022 Apr 5.
5
Bacterial and Host Determinants of Group B Streptococcal Infection of the Neonate and Infant.
Front Microbiol. 2022 Feb 21;13:820365. doi: 10.3389/fmicb.2022.820365. eCollection 2022.
6
Nano-scale architecture of blood-brain barrier tight-junctions.
Elife. 2021 Dec 24;10:e63253. doi: 10.7554/eLife.63253.
7
Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease.
Front Cell Neurosci. 2021 Jul 1;15:703944. doi: 10.3389/fncel.2021.703944. eCollection 2021.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验