Suppr超能文献

用于多组学中特征分组和评分的3Mint的发明。

Invention of 3Mint for feature grouping and scoring in multi-omics.

作者信息

Unlu Yazici Miray, Marron J S, Bakir-Gungor Burcu, Zou Fei, Yousef Malik

机构信息

Department of Bioengineering, Abdullah Gül University, Kayseri, Türkiye.

Department of Statistics and Operations Research, University of North Carolina, Chapel Hill, NC, United States.

出版信息

Front Genet. 2023 Mar 15;14:1093326. doi: 10.3389/fgene.2023.1093326. eCollection 2023.

Abstract

Advanced genomic and molecular profiling technologies accelerated the enlightenment of the regulatory mechanisms behind cancer development and progression, and the targeted therapies in patients. Along this line, intense studies with immense amounts of biological information have boosted the discovery of molecular biomarkers. Cancer is one of the leading causes of death around the world in recent years. Elucidation of genomic and epigenetic factors in Breast Cancer (BRCA) can provide a roadmap to uncover the disease mechanisms. Accordingly, unraveling the possible systematic connections between-omics data types and their contribution to BRCA tumor progression is crucial. In this study, we have developed a novel machine learning (ML) based integrative approach for multi-omics data analysis. This integrative approach combines information from gene expression (mRNA), microRNA (miRNA) and methylation data. Due to the complexity of cancer, this integrated data is expected to improve the prediction, diagnosis and treatment of disease through patterns only available from the 3-way interactions between these 3-omics datasets. In addition, the proposed method bridges the interpretation gap between the disease mechanisms that drive onset and progression. Our fundamental contribution is the 3 Multi-omics integrative tool (3Mint). This tool aims to perform grouping and scoring of groups using biological knowledge. Another major goal is improved gene selection detection of novel groups of cross-omics biomarkers. Performance of 3Mint is assessed using different metrics. Our computational performance evaluations showed that the 3Mint classifies the BRCA molecular subtypes with lower number of genes when compared to the miRcorrNet tool which uses miRNA and mRNA gene expression profiles in terms of similar performance metrics (95% Accuracy). The incorporation of methylation data in 3Mint yields a much more focused analysis. The 3Mint tool and all other supplementary files are available at https://github.com/malikyousef/3Mint/.

摘要

先进的基因组和分子谱分析技术加速了对癌症发生和发展背后调控机制以及患者靶向治疗的认识。沿着这条线,对大量生物信息的深入研究推动了分子生物标志物的发现。癌症是近年来全球主要的死亡原因之一。阐明乳腺癌(BRCA)中的基因组和表观遗传因素可以为揭示疾病机制提供路线图。因此,揭示组学数据类型之间可能的系统联系及其对BRCA肿瘤进展的贡献至关重要。在本研究中,我们开发了一种基于机器学习(ML)的新型多组学数据分析整合方法。这种整合方法结合了来自基因表达(mRNA)、微小RNA(miRNA)和甲基化数据的信息。由于癌症的复杂性,这种整合数据有望通过仅从这三个组学数据集之间的三方相互作用中获得的模式来改善疾病的预测、诊断和治疗。此外,所提出的方法弥合了驱动疾病发生和进展的疾病机制之间的解释差距。我们的基本贡献是3种多组学整合工具(3Mint)。该工具旨在利用生物学知识对组进行分组和评分。另一个主要目标是改进基因选择,检测新的跨组学生物标志物组。使用不同指标评估3Mint的性能。我们的计算性能评估表明,与使用miRNA和mRNA基因表达谱的miRcorrNet工具相比,3Mint在相似性能指标(95%准确率)下以更少的基因数量对BRCA分子亚型进行分类。在3Mint中纳入甲基化数据可产生更具针对性的分析。3Mint工具和所有其他补充文件可在https://github.com/malikyousef/3Mint/获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae2e/10050723/24efa73e8e20/fgene-14-1093326-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验