Suppr超能文献

MSstats 版本 4.0:大规模基于色谱定量的定量蛋白质组学实验的统计分析

MSstats Version 4.0: Statistical Analyses of Quantitative Mass Spectrometry-Based Proteomic Experiments with Chromatography-Based Quantification at Scale.

机构信息

Khoury College of Computer Science, Northeastern University, Boston, Massachusetts 02115, United States.

University of Wrocław, Wrocław 50-137, Poland.

出版信息

J Proteome Res. 2023 May 5;22(5):1466-1482. doi: 10.1021/acs.jproteome.2c00834. Epub 2023 Apr 5.

Abstract

The R-Bioconductor family of packages is widely used for statistical analyses of quantitative bottom-up mass spectrometry-based proteomic experiments to detect differentially abundant proteins. It is applicable to a variety of experimental designs and data acquisition strategies and is compatible with many data processing tools used to identify and quantify spectral features. In the face of ever-increasing complexities of experiments and data processing strategies, the core package of the family, with the same name , has undergone a series of substantial updates. Its new version v4.0 improves the usability, versatility, and accuracy of statistical methodology, and the usage of computational resources. New converters integrate the output of upstream processing tools directly with , requiring less manual work by the user. The package's statistical models have been updated to a more robust workflow. Finally, ' code has been substantially refactored to improve memory use and computation speed. Here we detail these updates, highlighting methodological differences between the new and old versions. An empirical comparison of v4.0 to its previous implementations, as well as to the packages and , on controlled mixtures and biological experiments demonstrated a stronger performance and better usability of v4.0 as compared to existing methods.

摘要

R-Bioconductor 软件包系列被广泛应用于基于定量 bottom-up 质谱的蛋白质组学实验的统计分析,以检测差异丰度的蛋白质。它适用于各种实验设计和数据采集策略,与用于识别和定量谱特征的许多数据处理工具兼容。面对实验和数据处理策略日益复杂的情况,该软件包的核心软件包 (同名) 经历了一系列重大更新。其新版本 v4.0 提高了统计方法、计算资源使用效率、通用性和准确性。新的转换器直接集成了上游处理工具的输出,减少了用户的手动工作。该软件包的统计模型已更新为更稳健的工作流程。最后,代码进行了大量重构,以提高内存使用和计算速度。在这里,我们详细介绍了这些更新,并强调了新版本与旧版本之间的方法差异。对受控混合物和生物实验的 v4.0 与其以前的实现以及包 和 的实证比较表明,与现有方法相比,v4.0 具有更强的性能和更好的可用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ef/10629259/98691b46ebea/pr2c00834_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验