Suppr超能文献

大规模绘制和诱变人类转录效应结构域图谱。

Large-scale mapping and mutagenesis of human transcriptional effector domains.

机构信息

Biophysics Program, Stanford University, Stanford, CA, USA.

Department of Genetics, Stanford University, Stanford, CA, USA.

出版信息

Nature. 2023 Apr;616(7956):365-372. doi: 10.1038/s41586-023-05906-y. Epub 2023 Apr 5.

Abstract

Human gene expression is regulated by more than 2,000 transcription factors and chromatin regulators. Effector domains within these proteins can activate or repress transcription. However, for many of these regulators we do not know what type of effector domains they contain, their location in the protein, their activation and repression strengths, and the sequences that are necessary for their functions. Here, we systematically measure the effector activity of more than 100,000 protein fragments tiling across most chromatin regulators and transcription factors in human cells (2,047 proteins). By testing the effect they have when recruited at reporter genes, we annotate 374 activation domains and 715 repression domains, roughly 80% of which are new and have not been previously annotated. Rational mutagenesis and deletion scans across all the effector domains reveal aromatic and/or leucine residues interspersed with acidic, proline, serine and/or glutamine residues are necessary for activation domain activity. Furthermore, most repression domain sequences contain sites for small ubiquitin-like modifier (SUMO)ylation, short interaction motifs for recruiting corepressors or are structured binding domains for recruiting other repressive proteins. We discover bifunctional domains that can both activate and repress, some of which dynamically split a cell population into high- and low-expression subpopulations. Our systematic annotation and characterization of effector domains provide a rich resource for understanding the function of human transcription factors and chromatin regulators, engineering compact tools for controlling gene expression and refining predictive models of effector domain function.

摘要

人类基因表达受 2000 多种转录因子和染色质调控因子调控。这些蛋白质中的效应结构域可以激活或抑制转录。然而,对于许多这些调节剂,我们不知道它们包含什么样的效应结构域,它们在蛋白质中的位置,它们的激活和抑制强度,以及它们发挥功能所必需的序列。在这里,我们系统地测量了超过 100000 个人类细胞中大多数染色质调节剂和转录因子的蛋白片段的效应活性(2047 种蛋白质)。通过测试它们在报告基因上募集时的效果,我们注释了 374 个激活结构域和 715 个抑制结构域,其中大约 80%是新的,以前没有被注释过。对所有效应结构域的合理突变和删除扫描显示,芳香族和/或亮氨酸残基与酸性、脯氨酸、丝氨酸和/或谷氨酰胺残基交替存在是激活结构域活性所必需的。此外,大多数抑制结构域序列包含小泛素样修饰物(SUMO)化的位点、用于募集核心抑制剂的短相互作用基序,或者是用于募集其他抑制蛋白的结构结合域。我们发现了具有激活和抑制双重功能的双功能结构域,其中一些结构域可以将细胞群体动态地分为高表达和低表达亚群。我们对效应结构域的系统注释和特征描述为理解人类转录因子和染色质调节剂的功能提供了丰富的资源,为设计用于控制基因表达的紧凑型工具和完善效应结构域功能的预测模型提供了资源。

相似文献

1
Large-scale mapping and mutagenesis of human transcriptional effector domains.
Nature. 2023 Apr;616(7956):365-372. doi: 10.1038/s41586-023-05906-y. Epub 2023 Apr 5.
2
Using High-Throughput Measurements to Identify Principles of Transcriptional and Epigenetic Regulators.
Methods Mol Biol. 2024;2842:79-101. doi: 10.1007/978-1-0716-4051-7_4.
3
SUMOylation of the polycomb group protein L3MBTL2 facilitates repression of its target genes.
Nucleic Acids Res. 2014 Mar;42(5):3044-58. doi: 10.1093/nar/gkt1317. Epub 2013 Dec 24.
4
High-throughput functional characterization of combinations of transcriptional activators and repressors.
Cell Syst. 2023 Sep 20;14(9):746-763.e5. doi: 10.1016/j.cels.2023.07.001. Epub 2023 Aug 4.
6
ZNF76, a novel transcriptional repressor targeting TATA-binding protein, is modulated by sumoylation.
J Biol Chem. 2004 Oct 8;279(41):42410-21. doi: 10.1074/jbc.M407287200. Epub 2004 Jul 26.
9
Mad proteins contain a dominant transcription repression domain.
Mol Cell Biol. 1996 Oct;16(10):5772-81. doi: 10.1128/MCB.16.10.5772.

引用本文的文献

2
Short activation domains control chromatin association of transcription factors.
bioRxiv. 2025 Aug 25:2024.12.20.629816. doi: 10.1101/2024.12.20.629816.
3
A SWI/SNF-specific Ig-like domain, SWIFT, is a transcription factor binding platform.
bioRxiv. 2025 Aug 1:2025.08.01.667725. doi: 10.1101/2025.08.01.667725.
4
The Dynamic Regulation of Daxx-Mediated Transcriptional Inhibition by SUMO and PML NBs.
Int J Mol Sci. 2025 Jul 12;26(14):6703. doi: 10.3390/ijms26146703.
5
Utilizing small molecules to probe and harness the proteome by pooled protein tagging with ligandable domains.
Front Pharmacol. 2025 Jun 23;16:1593844. doi: 10.3389/fphar.2025.1593844. eCollection 2025.
7
Engineering novel CRISPRi repressors for highly efficient mammalian gene regulation.
Genome Biol. 2025 Jun 12;26(1):164. doi: 10.1186/s13059-025-03640-4.
8
Exploring the complexity of MECP2 function in Rett syndrome.
Nat Rev Neurosci. 2025 May 13. doi: 10.1038/s41583-025-00926-1.
9
Metabolic mapping of the human solute carrier superfamily.
Mol Syst Biol. 2025 May 12. doi: 10.1038/s44320-025-00106-4.
10
Design principles of cell-state-specific enhancers in hematopoiesis.
Cell. 2025 Jun 12;188(12):3202-3218.e21. doi: 10.1016/j.cell.2025.04.017. Epub 2025 May 8.

本文引用的文献

1
Differential cofactor dependencies define distinct types of human enhancers.
Nature. 2022 Jun;606(7913):406-413. doi: 10.1038/s41586-022-04779-x. Epub 2022 Jun 1.
2
Human transcription factor protein interaction networks.
Nat Commun. 2022 Feb 9;13(1):766. doi: 10.1038/s41467-022-28341-5.
3
Directed mutational scanning reveals a balance between acidic and hydrophobic residues in strong human activation domains.
Cell Syst. 2022 Apr 20;13(4):334-345.e5. doi: 10.1016/j.cels.2022.01.002. Epub 2022 Feb 3.
4
Identification and functional characterization of transcriptional activators in human cells.
Mol Cell. 2022 Feb 3;82(3):677-695.e7. doi: 10.1016/j.molcel.2021.12.008. Epub 2022 Jan 10.
6
Compendium of human transcription factor effector domains.
Mol Cell. 2022 Feb 3;82(3):514-526. doi: 10.1016/j.molcel.2021.11.007. Epub 2021 Dec 3.
8
The Eukaryotic Linear Motif resource: 2022 release.
Nucleic Acids Res. 2022 Jan 7;50(D1):D497-D508. doi: 10.1093/nar/gkab975.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验