School of Navigation, Wuhan University of Technology, Wuhan, PR China.
Hubei Key Laboratory of Inland Shipping Technology, Wuhan, PR China.
PLoS One. 2023 Apr 6;18(4):e0283932. doi: 10.1371/journal.pone.0283932. eCollection 2023.
Real-time and accurate detection of ships plays a vital role in ensuring navigation safety and ship supervision. Aiming at the problems of large parameters, large computation quantity, poor real-time performance, and high requirements for memory and computing power of the current ship detection model, this paper proposes a ship target detection algorithm MC-YOLOv5s based on YOLOv5s. First, the MobileNetV3-Small lightweight network is used to replace the original feature extraction backbone network of YOLOv5s to improve the detection speed of the algorithm. And then, a more efficient CNeB is designed based on the ConvNeXt-Block module of the ConvNeXt network to replace the original feature fusion module of YOLOv5s, which improves the spatial interaction ability of feature information and further reduces the complexity of the model. The experimental results obtained from the training and verification of the MC-YOLOv5s algorithm show that, compared with the original YOLOv5s algorithm, MC-YOLOv5s reduces the number of parameters by 6.98 MB and increases the mAP by about 3.4%. Even compared with other lightweight detection models, the improved model proposed in this paper still has better detection performance. The MC-YOLOv5s has been verified in the ship visual inspection and has great application potential. The code and models are publicly available at https://github.com/sakura994479727/datas.
实时准确地检测船舶对于确保航行安全和船舶监管至关重要。针对当前船舶检测模型参数大、计算量大、实时性差、对内存和计算能力要求高的问题,本文提出了一种基于 YOLOv5s 的船舶目标检测算法 MC-YOLOv5s。首先,使用 MobileNetV3-Small 轻量级网络替换 YOLOv5s 的原始特征提取骨干网络,提高算法的检测速度。然后,基于 ConvNeXt 网络的 ConvNeXt-Block 模块设计了更高效的 CNeB,取代了 YOLOv5s 的原始特征融合模块,提高了特征信息的空间交互能力,进一步降低了模型的复杂度。通过对 MC-YOLOv5s 算法的训练和验证得到的实验结果表明,与原始 YOLOv5s 算法相比,MC-YOLOv5s 减少了 6.98MB 的参数数量,mAP 提高了约 3.4%。即使与其他轻量级检测模型相比,本文提出的改进模型仍然具有更好的检测性能。MC-YOLOv5s 已经在船舶视觉检测中得到验证,具有很大的应用潜力。代码和模型可在 https://github.com/sakura994479727/datas 上获得。