Suppr超能文献

雌激素受体阳性原发性人类乳腺肿瘤单细胞分辨率下的他莫昔芬反应

Tamoxifen Response at Single Cell Resolution in Estrogen Receptor-Positive Primary Human Breast Tumors.

作者信息

Kim Hyunsoo, Whitman Austin A, Wisniewska Kamila, Kakati Rasha T, Garcia-Recio Susana, Calhoun Benjamin C, Franco Hector L, Perou Charles M, Spanheimer Philip M

机构信息

Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC.

Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC.

出版信息

bioRxiv. 2023 Apr 19:2023.04.01.535159. doi: 10.1101/2023.04.01.535159.

Abstract

In ER+/HER2- breast cancer, multiple measures of intra-tumor heterogeneity are associated with worse response to endocrine therapy. To investigate heterogeneity in response to treatment, we developed an operating room-to-laboratory pipeline for the collection of live human tumors and normal breast specimens immediately after surgical resection for processing into single-cell workflows for experimentation and genomic analyses. We demonstrate differences in tamoxifen response by cell type and identify distinctly responsive and resistant subpopulations within the malignant cell compartment of human tumors. Tamoxifen resistance signatures from 3 distinct resistant subpopulations are prognostic in large cohorts of ER+ breast cancer patients and enriched in endocrine therapy resistant tumors. This novel ex vivo model system now provides a foundation to define responsive and resistant sub-populations within heterogeneous tumors, to develop precise single cell-based predictors of response to therapy, and to identify genes and pathways driving resistance to therapy.

摘要

在雌激素受体阳性/人表皮生长因子受体2阴性(ER+/HER2-)乳腺癌中,多种肿瘤内异质性指标与内分泌治疗反应较差相关。为了研究治疗反应中的异质性,我们开发了一种从手术室到实验室的流程,用于在手术切除后立即收集活体人类肿瘤和正常乳腺标本,以便处理成单细胞工作流程用于实验和基因组分析。我们证明了不同细胞类型对他莫昔芬的反应存在差异,并在人类肿瘤的恶性细胞区室中鉴定出明显有反应和耐药的亚群。来自3个不同耐药亚群的他莫昔芬耐药特征在大量ER+乳腺癌患者队列中具有预后价值,并且在内分泌治疗耐药肿瘤中富集。这种新型的体外模型系统现在为定义异质性肿瘤内的反应性和耐药亚群、开发基于单细胞的精确治疗反应预测指标以及鉴定驱动治疗耐药的基因和通路提供了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d63/10123773/5e7f7bd490da/nihpp-2023.04.01.535159v3-f0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验