Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
Food Microbiol. 2023 Aug;113:104278. doi: 10.1016/j.fm.2023.104278. Epub 2023 Apr 11.
Dry sanitation is recommended to control contamination and prevent microbial growth and biofilm formation in the low-moisture food manufacturing plants. The objective of this study was to evaluate the effectiveness of dry sanitation protocols on Salmonella three-age biofilms formed on stainless steel (SS) and polypropylene (PP). Biofilms were formed for 24, 48 and 96 h at 37 °C using a cocktail of six Salmonella strains (Muenster, Miami, Glostrup, Javiana, Oranienburg, Yoruba) isolated from the peanut supply chain. Then, the surfaces were exposed to UV-C radiation, hot air (90 °C), 70% ethanol and a commercial product based on isopropyl alcohol for 5, 10, 15 and 30 min. After 30min exposure, on PP the reductions ranged from 3.2 to 4.2 log CFU/cm for UV-C, from 2.6 to 3.0 log CFU/cm for hot air, from 1.6 to 3.2 log CFU/cm for 70% ethanol and from 1.5 to 1.9 log CFU/cm for the commercial product. On SS, after the same exposure time, reductions of 1.3-2.2 log CFU/cm, 2.2 to 3.3 log CFU/cm, 1.7 to 2.0 log CFU/cm and 1.6 to 2.4 log CFU/cm were observed for UV-C, hot air, 70% ethanol and commercial product, respectively. UV-C was the only treatment affected by the surface material (p < 0.05) whereas the biofilm age influenced the effectiveness of UV-C and hot air (p < 0.05). For most treatment, there was significant difference among the exposure times (p < 0.05). Overall, the fastest loss in the biofilm viability was noted in the first 5 min, followed by a tail phase. The time predicted by the Weibull model for the first decimal reduction ranged from 0.04 to 9.9 min on PP and from 0.7 to 8.5 min on SS. In addition, the Weibull model indicates that most of treatments (79%) required a long-term exposure time (>30 min) to achieve 3-log reductions of Salmonella biofilms. In summary, UV-C showed the best performance on PP whereas hot air was noted to be the most effective on SS.
干洁技术被推荐用于控制污染和防止低水分食品制造工厂中微生物的生长和生物膜的形成。本研究的目的是评估干洁方案对在不锈钢(SS)和聚丙烯(PP)上形成的沙门氏菌三龄生物膜的有效性。生物膜在 37°C 下使用由从花生供应链中分离出的六种沙门氏菌菌株(Muenster、Miami、Glostrup、Javiana、Oranienburg、Yoruba)的混合物形成 24、48 和 96 小时。然后,将表面暴露于 UV-C 辐射、热空气(90°C)、70%乙醇和基于异丙醇的商用产品 5、10、15 和 30 分钟。暴露 30 分钟后,在 PP 上,UV-C 的减少范围为 3.2 至 4.2 log CFU/cm,热空气为 2.6 至 3.0 log CFU/cm,70%乙醇为 1.6 至 3.2 log CFU/cm,商用产品为 1.5 至 1.9 log CFU/cm。在 SS 上,在相同的暴露时间后,观察到 1.3-2.2 log CFU/cm、2.2-3.3 log CFU/cm、1.7-2.0 log CFU/cm 和 1.6-2.4 log CFU/cm 的减少,分别用于 UV-C、热空气、70%乙醇和商用产品。UV-C 是唯一受表面材料影响的处理(p<0.05),而生物膜年龄影响了 UV-C 和热空气的有效性(p<0.05)。对于大多数处理,暴露时间之间存在显著差异(p<0.05)。总体而言,生物膜活力的最快损失发生在前 5 分钟内,随后是拖尾阶段。Weibull 模型预测的第一个十进制减少所需的时间在 PP 上为 0.04 至 9.9 分钟,在 SS 上为 0.7 至 8.5 分钟。此外,Weibull 模型表明,大多数处理(79%)需要长时间暴露(>30 分钟)才能实现沙门氏菌生物膜的 3 对数减少。总之,UV-C 在 PP 上表现最好,而热空气在 SS 上效果最好。