Suppr超能文献

基于 Transformer 的深度学习架构的上下文药物信息提取。

Contextualized medication information extraction using Transformer-based deep learning architectures.

机构信息

Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA; Cancer Informatics Shared Resource, University of Florida Health Cancer Center, Gainesville, FL, USA.

Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA.

出版信息

J Biomed Inform. 2023 Jun;142:104370. doi: 10.1016/j.jbi.2023.104370. Epub 2023 Apr 24.

Abstract

OBJECTIVE

To develop a natural language processing (NLP) system to extract medications and contextual information that help understand drug changes. This project is part of the 2022 n2c2 challenge.

MATERIALS AND METHODS

We developed NLP systems for medication mention extraction, event classification (indicating medication changes discussed or not), and context classification to classify medication changes context into 5 orthogonal dimensions related to drug changes. We explored 6 state-of-the-art pretrained transformer models for the three subtasks, including GatorTron, a large language model pretrained using > 90 billion words of text (including > 80 billion words from > 290 million clinical notes identified at the University of Florida Health). We evaluated our NLP systems using annotated data and evaluation scripts provided by the 2022 n2c2 organizers.

RESULTS

Our GatorTron models achieved the best F1-scores of 0.9828 for medication extraction (ranked 3rd), 0.9379 for event classification (ranked 2nd), and the best micro-average accuracy of 0.9126 for context classification. GatorTron outperformed existing transformer models pretrained using smaller general English text and clinical text corpora, indicating the advantage of large language models.

CONCLUSION

This study demonstrated the advantage of using large transformer models for contextual medication information extraction from clinical narratives.

摘要

目的

开发自然语言处理 (NLP) 系统,以提取有助于理解药物变化的药物和上下文信息。本项目是 2022 年 n2c2 挑战赛的一部分。

材料和方法

我们开发了用于药物提及提取、事件分类(指示讨论或不讨论药物变化)以及上下文分类的 NLP 系统,将药物变化的上下文分为与药物变化相关的 5 个正交维度。我们探索了 6 种最先进的预训练转换器模型,用于三个子任务,包括 GatorTron,这是一种使用超过 900 亿个单词的文本(包括来自佛罗里达大学健康中心的超过 2.9 亿份临床记录中的超过 800 亿个单词)进行预训练的大型语言模型。我们使用 2022 年 n2c2 组织者提供的注释数据和评估脚本评估了我们的 NLP 系统。

结果

我们的 GatorTron 模型在药物提取方面的最佳 F1 得分为 0.9828(排名第三),在事件分类方面的最佳 F1 得分为 0.9379(排名第二),在上下文分类方面的最佳微平均准确率为 0.9126。GatorTron 优于使用较小的通用英语文本和临床文本语料库预训练的现有转换器模型,这表明了大型语言模型的优势。

结论

本研究表明,使用大型转换器模型从临床叙述中提取上下文药物信息具有优势。

相似文献

1
Contextualized medication information extraction using Transformer-based deep learning architectures.
J Biomed Inform. 2023 Jun;142:104370. doi: 10.1016/j.jbi.2023.104370. Epub 2023 Apr 24.
2
Extracting Pulmonary Nodules and Nodule Characteristics from Radiology Reports of Lung Cancer Screening Patients Using Transformer Models.
J Healthc Inform Res. 2024 May 17;8(3):463-477. doi: 10.1007/s41666-024-00166-5. eCollection 2024 Sep.
3
A deep learning approach for medication disposition and corresponding attributes extraction.
J Biomed Inform. 2023 Jul;143:104391. doi: 10.1016/j.jbi.2023.104391. Epub 2023 May 15.
6
Clinical concept extraction using transformers.
J Am Med Inform Assoc. 2020 Dec 9;27(12):1935-1942. doi: 10.1093/jamia/ocaa189.
7
Detection of Medication Mentions and Medication Change Events in Clinical Notes Using Transformer-Based Models.
Stud Health Technol Inform. 2024 Jan 25;310:685-689. doi: 10.3233/SHTI231052.
8
A study of deep learning approaches for medication and adverse drug event extraction from clinical text.
J Am Med Inform Assoc. 2020 Jan 1;27(1):13-21. doi: 10.1093/jamia/ocz063.
10
Extracting social determinants of health events with transformer-based multitask, multilabel named entity recognition.
J Am Med Inform Assoc. 2023 Jul 19;30(8):1379-1388. doi: 10.1093/jamia/ocad046.

引用本文的文献

3
What can artificial intelligence do for EUS?
Endosc Ultrasound. 2025 Jan-Feb;14(1):1-3. doi: 10.1097/eus.0000000000000102. Epub 2025 Feb 27.
5
Opportunities and Risks of Large Language Models in Psychiatry.
NPP Digit Psychiatry Neurosci. 2024;2(1). doi: 10.1038/s44277-024-00010-z. Epub 2024 May 24.
6
Large Language Models in Biomedical and Health Informatics: A Review with Bibliometric Analysis.
J Healthc Inform Res. 2024 Sep 14;8(4):658-711. doi: 10.1007/s41666-024-00171-8. eCollection 2024 Dec.
7
A Joint Classification Method for COVID-19 Lesions Based on Deep Learning and Radiomics.
Tomography. 2024 Sep 5;10(9):1488-1500. doi: 10.3390/tomography10090109.
9
Generative large language models are all-purpose text analytics engines: text-to-text learning is all your need.
J Am Med Inform Assoc. 2024 Sep 1;31(9):1892-1903. doi: 10.1093/jamia/ocae078.
10
Large language models: a primer and gastroenterology applications.
Therap Adv Gastroenterol. 2024 Feb 22;17:17562848241227031. doi: 10.1177/17562848241227031. eCollection 2024.

本文引用的文献

1
A large language model for electronic health records.
NPJ Digit Med. 2022 Dec 26;5(1):194. doi: 10.1038/s41746-022-00742-2.
2
Toward Understanding Clinical Context of Medication Change Events in Clinical Narratives.
AMIA Annu Symp Proc. 2022 Feb 21;2021:833-842. eCollection 2021.
3
Medication errors related to computerized provider order entry systems in hospitals and how they change over time: A narrative review.
Res Social Adm Pharm. 2021 Sep;17(9):1546-1552. doi: 10.1016/j.sapharm.2020.12.004. Epub 2020 Dec 16.
4
Clinical concept extraction using transformers.
J Am Med Inform Assoc. 2020 Dec 9;27(12):1935-1942. doi: 10.1093/jamia/ocaa189.
5
Medical Information Extraction in the Age of Deep Learning.
Yearb Med Inform. 2020 Aug;29(1):208-220. doi: 10.1055/s-0040-1702001. Epub 2020 Aug 21.
6
2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records.
J Am Med Inform Assoc. 2020 Jan 1;27(1):3-12. doi: 10.1093/jamia/ocz166.
8
BioBERT: a pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics. 2020 Feb 15;36(4):1234-1240. doi: 10.1093/bioinformatics/btz682.
9
A study of deep learning approaches for medication and adverse drug event extraction from clinical text.
J Am Med Inform Assoc. 2020 Jan 1;27(1):13-21. doi: 10.1093/jamia/ocz063.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验