Suppr超能文献

moBRCA-net:一种基于多组学注意力神经网络的乳腺癌亚型分类框架。

moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks.

机构信息

Department of Computer Science, Virginia Tech, Blacksburg, USA.

Division of Computer Science, Sookmyung Women's University, Seoul, Republic of Korea.

出版信息

BMC Bioinformatics. 2023 Apr 26;24(1):169. doi: 10.1186/s12859-023-05273-5.

Abstract

BACKGROUND

Breast cancer is a highly heterogeneous disease that comprises multiple biological components. Owing its diversity, patients have different prognostic outcomes; hence, early diagnosis and accurate subtype prediction are critical for treatment. Standardized breast cancer subtyping systems, mainly based on single-omics datasets, have been developed to ensure proper treatment in a systematic manner. Recently, multi-omics data integration has attracted attention to provide a comprehensive view of patients but poses a challenge due to the high dimensionality. In recent years, deep learning-based approaches have been proposed, but they still present several limitations.

RESULTS

In this study, we describe moBRCA-net, an interpretable deep learning-based breast cancer subtype classification framework that uses multi-omics datasets. Three omics datasets comprising gene expression, DNA methylation and microRNA expression data were integrated while considering the biological relationships among them, and a self-attention module was applied to each omics dataset to capture the relative importance of each feature. The features were then transformed to new representations considering the respective learned importance, allowing moBRCA-net to predict the subtype.

CONCLUSIONS

Experimental results confirmed that moBRCA-net has a significantly enhanced performance compared with other methods, and the effectiveness of multi-omics integration and omics-level attention were identified. moBRCA-net is publicly available at https://github.com/cbi-bioinfo/moBRCA-net .

摘要

背景

乳腺癌是一种高度异质的疾病,包含多个生物学成分。由于其多样性,患者的预后结果不同;因此,早期诊断和准确的亚型预测对于治疗至关重要。基于单组学数据集的标准化乳腺癌分型系统已经开发出来,以确保系统地进行适当的治疗。最近,多组学数据的整合引起了人们的关注,为患者提供了更全面的视角,但由于其高维性,这仍然是一个挑战。近年来,基于深度学习的方法已经被提出,但它们仍然存在一些局限性。

结果

在本研究中,我们描述了 moBRCA-net,这是一个基于深度学习的乳腺癌亚型分类框架,它使用多组学数据集。整合了三个包含基因表达、DNA 甲基化和 microRNA 表达数据的组学数据集,同时考虑了它们之间的生物学关系,并为每个组学数据集应用了自注意力模块,以捕获每个特征的相对重要性。然后,根据各自学习到的重要性,将特征转换为新的表示形式,从而使 moBRCA-net 能够预测亚型。

结论

实验结果证实,moBRCA-net 的性能明显优于其他方法,并且确定了多组学整合和组学层次注意力的有效性。moBRCA-net 可在 https://github.com/cbi-bioinfo/moBRCA-net 上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc82/10131354/71e3fa00c42a/12859_2023_5273_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验