Suppr超能文献

用于电化学水氧化的尖晶石氧化物的表面重构策略。

Navigating surface reconstruction of spinel oxides for electrochemical water oxidation.

机构信息

Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.

Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China.

出版信息

Nat Commun. 2023 Apr 28;14(1):2467. doi: 10.1038/s41467-023-38017-3.

Abstract

Understanding and mastering the structural evolution of water oxidation electrocatalysts lays the foundation to finetune their catalytic activity. Herein, we demonstrate that surface reconstruction of spinel oxides originates from the metal-oxygen covalency polarity in the M-O-M backbone. A stronger M-O covalency relative to M-O covalency is found beneficial for a more thorough reconstruction towards oxyhydroxides. The structure-reconstruction relationship allows precise prediction of the reconstruction ability of spinel pre-catalysts, based on which the reconstruction degree towards the in situ generated oxyhydroxides can be controlled. The investigations of oxyhydroxides generated from spinel pre-catalysts with the same reconstruction ability provide guidelines to navigate the cation selection in spinel pre-catalysts design. This work reveals the fundamentals for manipulating the surface reconstruction of spinel pre-catalysts for water oxidation.

摘要

理解和掌握水氧化电催化剂的结构演变,为精细调整其催化活性奠定了基础。在此,我们证明尖晶石氧化物的表面重构源于 M-O-M 骨架中的金属-氧共价极性。与 M-O 共价相比,更强的 M-O 共价有利于更彻底的向氧氢氧化物的重构。结构-重构关系允许对尖晶石前催化剂的重构能力进行精确预测,在此基础上可以控制其对原位生成的氧氢氧化物的重构程度。对具有相同重构能力的尖晶石前催化剂生成的氧氢氧化物的研究为在尖晶石前催化剂设计中进行阳离子选择提供了指导。这项工作揭示了用于操纵水氧化尖晶石前催化剂表面重构的基本原理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b313/10147629/8b794ebc26d5/41467_2023_38017_Fig1_HTML.jpg

相似文献

1
Navigating surface reconstruction of spinel oxides for electrochemical water oxidation.
Nat Commun. 2023 Apr 28;14(1):2467. doi: 10.1038/s41467-023-38017-3.
2
Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation.
Adv Mater. 2019 Mar;31(12):e1807898. doi: 10.1002/adma.201807898. Epub 2019 Jan 24.
3
Promoting Surface Reconstruction in Spinel Oxides via Tetrahedral-Octahedral Phase Boundary Construction for Efficient Oxygen Evolution.
Angew Chem Int Ed Engl. 2024 Oct 14;63(42):e202409912. doi: 10.1002/anie.202409912. Epub 2024 Sep 12.
4
Understanding the Origin of Reconstruction in Transition Metal Oxide Oxygen Evolution Reaction Electrocatalysts.
ChemSusChem. 2024 Jan 22;17(2):e202301195. doi: 10.1002/cssc.202301195. Epub 2023 Nov 21.
5
Enlarged CoO Covalency in Octahedral Sites Leading to Highly Efficient Spinel Oxides for Oxygen Evolution Reaction.
Adv Mater. 2018 Aug;30(32):e1802912. doi: 10.1002/adma.201802912. Epub 2018 Jun 25.
6
Engineering Surface Structure of Spinel Oxides via High-Valent Vanadium Doping for Remarkably Enhanced Electrocatalytic Oxygen Evolution Reaction.
ACS Appl Mater Interfaces. 2019 Sep 11;11(36):33012-33021. doi: 10.1021/acsami.9b10868. Epub 2019 Aug 29.
7
Mn-O Covalency Governs the Intrinsic Activity of Co-Mn Spinel Oxides for Boosted Peroxymonosulfate Activation.
Angew Chem Int Ed Engl. 2021 Jan 4;60(1):274-280. doi: 10.1002/anie.202010828. Epub 2020 Oct 27.
9
Identifying the Geometric Site Dependence of Spinel Oxides for the Electrooxidation of 5-Hydroxymethylfurfural.
Angew Chem Int Ed Engl. 2020 Oct 19;59(43):19215-19221. doi: 10.1002/anie.202007767. Epub 2020 Aug 26.
10
Significance of Engineering the Octahedral Units to Promote the Oxygen Evolution Reaction of Spinel Oxides.
Adv Mater. 2019 Oct;31(41):e1902509. doi: 10.1002/adma.201902509. Epub 2019 Jul 30.

引用本文的文献

1
Discovering high-entropy electrocatalysts through a batch-alloy targeting approach.
Sci Adv. 2025 Jul 11;11(28):eadx6121. doi: 10.1126/sciadv.adx6121.
4
5
Inorganic-organic hybrid cobalt spinel oxides for catalyzing the oxygen evolution reaction.
Nat Commun. 2025 Mar 13;16(1):2483. doi: 10.1038/s41467-025-57799-2.
8
Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces.
Chem Rev. 2025 Feb 12;125(3):1332-1419. doi: 10.1021/acs.chemrev.4c00133. Epub 2025 Jan 28.
9
Importing Atomic Rare-Earth Sites to Activate Lattice Oxygen of Spinel Oxides for Electrocatalytic Oxygen Evolution.
Angew Chem Int Ed Engl. 2025 Jan 15;64(3):e202415306. doi: 10.1002/anie.202415306. Epub 2024 Nov 9.
10
Spin-dependent electrocatalysis.
Natl Sci Rev. 2024 Sep 5;11(9):nwae314. doi: 10.1093/nsr/nwae314. eCollection 2024 Sep.

本文引用的文献

2
Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction.
Chem Soc Rev. 2021 Aug 7;50(15):8428-8469. doi: 10.1039/d0cs00962h. Epub 2021 Jul 14.
4
Comprehensive Understandings into Complete Reconstruction of Precatalysts: Synthesis, Applications, and Characterizations.
Adv Mater. 2021 Aug;33(32):e2007344. doi: 10.1002/adma.202007344. Epub 2021 May 29.
5
Intrinsic Electrocatalytic Activity for Oxygen Evolution of Crystalline 3d-Transition Metal Layered Double Hydroxides.
Angew Chem Int Ed Engl. 2021 Jun 21;60(26):14446-14457. doi: 10.1002/anie.202100631. Epub 2021 May 26.
6
Spin-Related Electron Transfer and Orbital Interactions in Oxygen Electrocatalysis.
Adv Mater. 2020 Oct;32(39):e2003297. doi: 10.1002/adma.202003297. Epub 2020 Aug 9.
7
Constructing an Adaptive Heterojunction as a Highly Active Catalyst for the Oxygen Evolution Reaction.
Adv Mater. 2020 Jul;32(30):e2001292. doi: 10.1002/adma.202001292. Epub 2020 Jun 21.
9
Shifting Oxygen Charge Towards Octahedral Metal: A Way to Promote Water Oxidation on Cobalt Spinel Oxides.
Angew Chem Int Ed Engl. 2019 Apr 23;58(18):6042-6047. doi: 10.1002/anie.201902114. Epub 2019 Mar 26.
10
Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation.
Adv Mater. 2019 Mar;31(12):e1807898. doi: 10.1002/adma.201807898. Epub 2019 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验