Suppr超能文献

假基因转录是哺乳动物细胞衰老和组织老化的一个特征。

Spurious intragenic transcription is a feature of mammalian cellular senescence and tissue aging.

机构信息

Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.

Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Nat Aging. 2023 Apr;3(4):402-417. doi: 10.1038/s43587-023-00384-3. Epub 2023 Mar 30.

Abstract

Mammalian aging is characterized by the progressive loss of tissue function and increased risk for disease. Accumulation of senescent cells in aging tissues partly contributes to this decline, and targeted depletion of senescent cells in vivo ameliorates many age-related phenotypes. The fundamental molecular mechanisms responsible for the decline of cellular health and fitness during senescence and aging are largely unknown. In this study, we investigated whether chromatin-mediated loss of transcriptional fidelity, known to contribute to fitness and survival in yeast and worms, also occurs during human cellular senescence and mouse aging. Our findings reveal aberrant transcription initiation inside genes during senescence and aging that co-occurs with changes in the chromatin landscape. Interventions that alter these spurious transcripts have profound consequences on cellular health, primarily affecting intracellular signal transduction pathways. We propose that age-related spurious transcription promotes a noisy transcriptome and degradation of coherent transcriptional networks.

摘要

哺乳动物的衰老表现为组织功能的逐渐丧失和疾病风险的增加。衰老组织中衰老细胞的积累部分导致了这种衰退,而体内衰老细胞的靶向耗竭改善了许多与年龄相关的表型。导致衰老和衰老过程中细胞健康和适应性下降的基本分子机制在很大程度上尚不清楚。在这项研究中,我们研究了染色质介导的转录保真度丧失是否也发生在人类细胞衰老和小鼠衰老过程中,已知这种丧失有助于酵母和蠕虫的适应性和生存。我们的研究结果表明,在衰老和衰老过程中,基因内发生了异常的转录起始,同时伴随着染色质景观的变化。改变这些异常转录本的干预措施对细胞健康有深远的影响,主要影响细胞内信号转导途径。我们提出,与年龄相关的异常转录促进了嘈杂的转录组和连贯转录网络的降解。

相似文献

1
Spurious intragenic transcription is a feature of mammalian cellular senescence and tissue aging.
Nat Aging. 2023 Apr;3(4):402-417. doi: 10.1038/s43587-023-00384-3. Epub 2023 Mar 30.
2
The Chromatin Landscape of Cellular Senescence.
Trends Genet. 2016 Nov;32(11):751-761. doi: 10.1016/j.tig.2016.09.005. Epub 2016 Sep 28.
4
Integrated multi-omics approach revealed cellular senescence landscape.
Nucleic Acids Res. 2022 Oct 28;50(19):10947-10963. doi: 10.1093/nar/gkac885.
5
Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype.
Exp Gerontol. 2016 Sep;82:39-49. doi: 10.1016/j.exger.2016.05.010. Epub 2016 May 25.
6
Hallmarks of Cellular Senescence.
Trends Cell Biol. 2018 Jun;28(6):436-453. doi: 10.1016/j.tcb.2018.02.001. Epub 2018 Feb 21.
7
TEAD4 antagonizes cellular senescence by remodeling chromatin accessibility at enhancer regions.
Cell Mol Life Sci. 2023 Oct 19;80(11):330. doi: 10.1007/s00018-023-04980-9.
10
The expression signature of in vitro senescence resembles mouse but not human aging.
Genome Biol. 2005;6(13):R109. doi: 10.1186/gb-2005-6-13-r109. Epub 2005 Dec 16.

引用本文的文献

1
Colonic Aging and Colorectal Cancer: An Unignorable Interplay and Its Translational Implications.
Biology (Basel). 2025 Jul 3;14(7):805. doi: 10.3390/biology14070805.
2
Induction of host genes by nested genes during development.
iScience. 2025 Jun 27;28(8):113021. doi: 10.1016/j.isci.2025.113021. eCollection 2025 Aug 15.
3
DNA methylation protects cancer cells against senescence.
Nat Commun. 2025 Jul 1;16(1):5901. doi: 10.1038/s41467-025-61157-7.
5
Interpreting mammalian synonymous site conservation in light of the unwanted transcript hypothesis.
Nat Commun. 2025 Feb 27;16(1):2007. doi: 10.1038/s41467-025-57179-w.
6
Basic Epigenetic Mechanisms.
Subcell Biochem. 2025;108:1-49. doi: 10.1007/978-3-031-75980-2_1.
7
Genetic origins, regulators, and biomarkers of cellular senescence.
Trends Genet. 2024 Dec;40(12):1018-1031. doi: 10.1016/j.tig.2024.08.007. Epub 2024 Sep 27.
8
A cellular identity crisis? Plasticity changes during aging and rejuvenation.
Genes Dev. 2024 Oct 16;38(17-20):823-842. doi: 10.1101/gad.351728.124.
9
Mapping medically relevant RNA isoform diversity in the aged human frontal cortex with deep long-read RNA-seq.
Nat Biotechnol. 2025 Apr;43(4):635-646. doi: 10.1038/s41587-024-02245-9. Epub 2024 May 22.
10
Linking Aging to Cancer: The Role of Chromatin Biology.
J Gerontol A Biol Sci Med Sci. 2024 Jul 1;79(7). doi: 10.1093/gerona/glae133.

本文引用的文献

1
Novel insights from a multiomics dissection of the Hayflick limit.
Elife. 2022 Feb 4;11:e70283. doi: 10.7554/eLife.70283.
2
Altered Chromatin States Drive Cryptic Transcription in Aging Mammalian Stem Cells.
Nat Aging. 2021 Aug;1(8):684-697. doi: 10.1038/s43587-021-00091-x. Epub 2021 Aug 2.
3
Characterizing RNA stability genome-wide through combined analysis of PRO-seq and RNA-seq data.
BMC Biol. 2021 Feb 15;19(1):30. doi: 10.1186/s12915-021-00949-x.
4
ATF3 drives senescence by reconstructing accessible chromatin profiles.
Aging Cell. 2021 Mar;20(3):e13315. doi: 10.1111/acel.13315. Epub 2021 Feb 4.
5
AP-1 imprints a reversible transcriptional programme of senescent cells.
Nat Cell Biol. 2020 Jul;22(7):842-855. doi: 10.1038/s41556-020-0529-5. Epub 2020 Jun 8.
6
NELF Regulates a Promoter-Proximal Step Distinct from RNA Pol II Pause-Release.
Mol Cell. 2020 Apr 16;78(2):261-274.e5. doi: 10.1016/j.molcel.2020.02.014. Epub 2020 Mar 9.
7
Determinants of enhancer and promoter activities of regulatory elements.
Nat Rev Genet. 2020 Feb;21(2):71-87. doi: 10.1038/s41576-019-0173-8. Epub 2019 Oct 11.
9
The histone variant H2A.Z in gene regulation.
Epigenetics Chromatin. 2019 Jun 14;12(1):37. doi: 10.1186/s13072-019-0274-9.
10
g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update).
Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198. doi: 10.1093/nar/gkz369.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验