Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
Department of Pharmacology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Cell. 2023 May 11;186(10):2256-2272.e23. doi: 10.1016/j.cell.2023.03.034. Epub 2023 Apr 28.
Applications of prime editing are often limited due to insufficient efficiencies, and it can require substantial time and resources to determine the most efficient pegRNAs and prime editors (PEs) to generate a desired edit under various experimental conditions. Here, we evaluated prime editing efficiencies for a total of 338,996 pairs of pegRNAs including 3,979 epegRNAs and target sequences in an error-free manner. These datasets enabled a systematic determination of factors affecting prime editing efficiencies. Then, we developed computational models, named DeepPrime and DeepPrime-FT, that can predict prime editing efficiencies for eight prime editing systems in seven cell types for all possible types of editing of up to 3 base pairs. We also extensively profiled the prime editing efficiencies at mismatched targets and developed a computational model predicting editing efficiencies at such targets. These computational models, together with our improved knowledge about prime editing efficiency determinants, will greatly facilitate prime editing applications.
由于效率不足,prime 编辑的应用往往受到限制,并且需要大量的时间和资源来确定在各种实验条件下生成所需编辑的最有效 pegRNA 和 prime 编辑器 (PE)。在这里,我们以无错误的方式评估了总共 338996 对 pegRNA 及其靶序列的 prime 编辑效率,其中包括 3979 个 epegRNA。这些数据集使我们能够系统地确定影响 prime 编辑效率的因素。然后,我们开发了名为 DeepPrime 和 DeepPrime-FT 的计算模型,这些模型可以预测 7 种细胞类型中的 8 种 prime 编辑系统中多达 3 个碱基的所有可能类型编辑的 prime 编辑效率。我们还广泛研究了在错配靶标上的 prime 编辑效率,并开发了一种计算模型来预测此类靶标上的编辑效率。这些计算模型,以及我们对 prime 编辑效率决定因素的深入了解,将极大地促进 prime 编辑的应用。