Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.
Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China; and.
Am J Respir Cell Mol Biol. 2023 Sep;69(3):295-309. doi: 10.1165/rcmb.2022-0280OC.
Pulmonary ionocytes express high levels of cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that is critical for hydration of the airways and mucociliary clearance. However, the cellular mechanisms that govern ionocyte specification and function remain unclear. We observed that increased abundance of ionocytes in cystic fibrosis (CF) airway epithelium was associated with enhanced expression of Sonic Hedgehog (SHH) effectors. In this study, we evaluated whether the SHH pathway directly impacts ionocyte differentiation and CFTR function in airway epithelia. Pharmacological HPI1-mediated inhibition of SHH signaling component GLI1 significantly impaired human basal cell specification of ionocytes and ciliated cells but significantly enhanced specification of secretory cells. By contrast, activation of the SHH pathway effector smoothened (SMO) with the chemical agonist SAG significantly enhanced ionocyte specification. The abundance of CFTR BSND ionocytes under these conditions had a direct relationship with CFTR-mediated currents in differentiated air-liquid interface (ALI) airway cultures. These findings were corroborated in ferret ALI airway cultures generated from basal cells in which the genes encoding the SHH receptor or its intracellular effector were genetically ablated using CRISPR-Cas9, causing aberrant activation or suppression of SHH signaling, respectively. These findings demonstrate that SHH signaling is directly involved in airway basal cell specification of CFTR-expressing pulmonary ionocytes and is likely responsible for enhanced ionocyte abundance in the CF proximal airways. Pharmacologic approaches to enhance ionocyte and reduce secretory cell specification after gene editing of basal cells may have utility in the treatment of CF.
肺离子细胞表达高水平的囊性纤维化跨膜电导调节因子(CFTR),这是一种阴离子通道,对气道的水合作用和黏液纤毛清除至关重要。然而,调控离子细胞分化和功能的细胞机制仍不清楚。我们观察到,囊性纤维化(CF)气道上皮中离子细胞的丰度增加与 Sonic Hedgehog(SHH)效应物的表达增强有关。在这项研究中,我们评估了 SHH 通路是否直接影响气道上皮中的离子细胞分化和 CFTR 功能。药理学 HPI1 介导的 SHH 信号组分 GLI1 的抑制显著损害了人基底细胞中离子细胞和纤毛细胞的特异性,但显著增强了分泌细胞的特异性。相比之下,化学激动剂 SAG 对 SHH 通路效应子 smoothened(SMO)的激活显著增强了离子细胞的特异性。在这些条件下,BSND 离子细胞中 CFTR 的丰度与分化的气液界面(ALI)气道培养物中 CFTR 介导的电流有直接关系。这些发现得到了雪貂 ALI 气道培养物的证实,这些培养物是从基底细胞中生成的,这些细胞中编码 SHH 受体 或其细胞内效应物 的基因使用 CRISPR-Cas9 被遗传敲除,分别导致 SHH 信号的异常激活或抑制。这些发现表明,SHH 信号直接参与气道基底细胞中 CFTR 表达的肺离子细胞的特异性,并可能导致 CF 近端气道中离子细胞丰度增加。在对基底细胞进行 基因编辑后,通过药物方法增强离子细胞和减少分泌细胞的特异性可能对 CF 的治疗具有实用价值。