Suppr超能文献

一种用于预测普通人群中针对奥密克戎SARS-CoV-2 BA.2和BA.4/5亚谱系的血清中和活性的机器学习模型。

A machine learning model for predicting serum neutralizing activity against Omicron SARS-CoV-2 BA.2 and BA.4/5 sublineages in the general population.

作者信息

Camacho Jorge, Albert Eliseo, Álvarez-Rodríguez Beatriz, Rusu Luciana, Zulaica Joao, Moreno Alicia Rodríguez, Peiró Salvador, Geller Ron, Navarro David, Giménez Estela

机构信息

Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, Valencia, Spain.

Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Valencia, Spain.

出版信息

J Med Virol. 2023 Apr;95(4):e28739. doi: 10.1002/jmv.28739.

Abstract

Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID-19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2 and BA.4/5 sublineages in the general population. Anti-SARS-CoV-2 receptor-binding domain (RBD) total antibodies were measured by the Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics) in all participants. NtAbs against Omicron BA.2 and BA4/5 were measured using a SARS-CoV-2 S pseudotyped neutralization assay in 100 randomly selected sera. A ML model was built using the variables of age, vaccination (number of doses) and SARS-CoV-2 infection status. The model was trained in a cohort (TC) comprising 931 participants and validated in an external cohort (VC) including 787 individuals. Receiver operating characteristics analysis indicated that an anti-SARS-CoV-2 RBD total antibody threshold of 2300 BAU/mL best discriminated between participants either exhibiting or not detectable Omicron BA.2 and Omicron BA.4/5-Spike targeted NtAb responses (87% and 84% precision, respectively). The ML model correctly classified 88% (793/901) of participants in the TC: 717/749 (95.7%) of those displaying ≥2300 BAU/mL and 76/152 (50%) of those exhibiting antibody levels <2300 BAU/mL. The model performed better in vaccinated participants, either with or without prior SARS-CoV-2 infection. The overall accuracy of the ML model in the VC was comparable. Our ML model, based upon a few easily collected parameters for predicting neutralizing activity against Omicron BA.2 and BA.4/5 (sub)variants circumvents the need to perform not only neutralization assays, but also anti-S serological tests, thus potentially saving costs in the setting of large seroprevalence studies.

摘要

监督式机器学习(ML)方法已被用于在各种临床环境中预测新冠病毒疫苗引发的抗体反应。在此,我们探讨了一种ML方法在普通人群中预测针对奥密克戎BA.2和BA.4/5亚谱系的可检测中和抗体反应(NtAb)存在情况的可靠性。在所有参与者中,通过Elecsys®抗SARS-CoV-2 S检测法(罗氏诊断)测量抗SARS-CoV-2受体结合域(RBD)总抗体。在100份随机选择的血清中,使用SARS-CoV-2 S假型中和试验测量针对奥密克戎BA.2和BA4/5的NtAb。使用年龄、疫苗接种(剂量数)和SARS-CoV-2感染状态等变量构建ML模型。该模型在一个由931名参与者组成的队列(TC)中进行训练,并在一个包括787人的外部队列(VC)中进行验证。受试者操作特征分析表明,抗SARS-CoV-2 RBD总抗体阈值为2300 BAU/mL时,能最佳区分表现出或未表现出针对奥密克戎BA.2和奥密克戎BA.4/5刺突蛋白的可检测NtAb反应的参与者(精确度分别为87%和84%)。ML模型在TC中正确分类了88%(793/901)的参与者:抗体水平≥2300 BAU/mL的参与者中有717/749(95.7%),抗体水平<2300 BAU/mL的参与者中有76/152(50%)。该模型在接种疫苗的参与者中表现更好,无论他们之前是否感染过SARS-CoV-2。ML模型在VC中的总体准确性相当。我们基于几个易于收集的参数构建的ML模型,用于预测针对奥密克戎BA.2和BA.4/5(亚)变体的中和活性,不仅避免了进行中和试验的需要,还避免了进行抗S血清学检测的需要,从而有可能在大规模血清流行率研究中节省成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验