Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA.
Department of Obstetrics & Gynecology, University of Washington School of Medicine, Seattle, WA.
JCO Precis Oncol. 2023 May;7:e2200720. doi: 10.1200/PO.22.00720.
Homologous recombination DNA repair deficiency (HRD) is a therapeutic biomarker for sensitivity to platinum and poly(ADP-ribose) polymerase inhibitor therapies in breast and ovarian cancers. Several molecular phenotypes and diagnostic strategies have been developed to assess HRD; however, their clinical implementation remains both technically challenging and methodologically unstandardized.
We developed and validated an efficient and cost-effective strategy for HRD determination on the basis of calculation of a genome-wide loss of heterozygosity (LOH) score through targeted, hybridization capture and next-generation DNA sequencing augmented with 3,000 common, polymorphic single-nucleotide polymorphism (SNP) sites distributed genome-wide. This approach requires minimal sequence reads and can be readily integrated into targeted gene capture workflows already in use for molecular oncology. We interrogated 99 ovarian neoplasm-normal pairs using this method and compared results with patient mutational genotypes and orthologous predictors of HRD derived from whole-genome mutational signatures.
LOH scores of ≥11% had >86% sensitivity for identifying tumors with HRD-causing mutations in an independent validation set (90.6% sensitivity for all specimens). We found strong agreement of our analytic approach with genome-wide mutational signature assays for determining HRD, yielding an estimated 96.7% sensitivity and 50% specificity. We observed poor concordance with mutational signatures inferred using only mutations detected by the targeted gene capture panel, suggesting inadequacy of the latter approach. LOH score did not significantly correlate with treatment outcomes.
Targeted sequencing of genome-wide polymorphic SNP sites can be used to infer LOH events and subsequently diagnose HRD in ovarian tumors. The methods presented here are readily generalizable to other targeted gene oncology assays and could be adapted for HRD diagnosis in other tumor types.
同源重组 DNA 修复缺陷(HRD)是乳腺癌和卵巢癌对铂类药物和聚(ADP-核糖)聚合酶抑制剂治疗敏感性的治疗性生物标志物。已经开发了几种分子表型和诊断策略来评估 HRD;然而,其临床实施既具有技术挑战性,又缺乏方法学标准化。
我们开发并验证了一种基于靶向杂交捕获和下一代 DNA 测序的全基因组杂合性丢失(LOH)评分计算的高效且具有成本效益的 HRD 确定策略,该策略通过靶向杂交捕获和下一代 DNA 测序来计算全基因组杂合性丢失(LOH)评分,并辅以 3000 个分布在全基因组中的常见多态性单核苷酸多态性(SNP)位点。这种方法需要最少的序列读数,并且可以很容易地整合到已经用于分子肿瘤学的靶向基因捕获工作流程中。我们使用这种方法检测了 99 对卵巢肿瘤-正常对,并将结果与患者突变基因型和全基因组突变特征衍生的 HRD 同源预测因子进行了比较。
在独立验证集(所有标本的敏感性为 90.6%)中,LOH 评分≥11%的肿瘤具有 HRD 相关突变的检测率>86%。我们发现我们的分析方法与全基因组突变特征分析方法在确定 HRD 方面具有很强的一致性,其敏感性估计为 96.7%,特异性为 50%。我们发现与仅使用靶向基因捕获面板检测到的突变推断的突变特征一致性较差,这表明后者方法的不充分性。LOH 评分与治疗结果无显著相关性。
全基因组多态性 SNP 位点的靶向测序可用于推断 LOH 事件,并随后诊断卵巢肿瘤中的 HRD。本文提出的方法易于推广到其他靶向基因肿瘤学检测,并可适应其他肿瘤类型的 HRD 诊断。