National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States.
J Chem Inf Model. 2023 Jun 12;63(11):3438-3447. doi: 10.1021/acs.jcim.2c01530. Epub 2023 May 19.
A critical step in structure-based drug discovery is predicting whether and how a candidate molecule binds to a model of a therapeutic target. However, substantial protein side chain movements prevent current screening methods, such as docking, from accurately predicting the ligand conformations and require expensive refinements to produce viable candidates. We present the development of a high-throughput and flexible ligand pose refinement workflow, called "tinyIFD". The main features of the workflow include the use of specialized high-throughput, small-system MD simulation code mdgx.cuda and an actively learning model zoo approach. We show the application of this workflow on a large test set of diverse protein targets, achieving 66% and 76% success rates for finding a crystal-like pose within the top-2 and top-5 poses, respectively. We also applied this workflow to the SARS-CoV-2 main protease (M) inhibitors, where we demonstrate the benefit of the active learning aspect in this workflow.
基于结构的药物发现的关键步骤是预测候选分子是否以及如何与治疗靶标的模型结合。然而,大量的蛋白质侧链运动阻止了当前的筛选方法,如对接,无法准确预测配体构象,并需要昂贵的改进才能产生可行的候选药物。我们提出了一种高通量和灵活的配体构象精修工作流程,称为“tinyIFD”。该工作流程的主要特点包括使用专门的高通量、小体系 MD 模拟代码 mdgx.cuda 和主动学习模型动物园方法。我们展示了该工作流程在一组多样化的蛋白质靶标上的应用,在找到前 2 位和前 5 位构象中具有晶体样构象的成功率分别达到了 66%和 76%。我们还将该工作流程应用于 SARS-CoV-2 主蛋白酶 (M) 抑制剂,在该工作流程中展示了主动学习方面的优势。