Suppr超能文献

2000 年至 2020 年中国每日 1 公里 PM 浓度及其长期暴露的时空连续估计。

Spatiotemporally continuous estimates of daily 1-km PM concentrations and their long-term exposure in China from 2000 to 2020.

机构信息

School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.

School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.

出版信息

J Environ Manage. 2023 Sep 15;342:118145. doi: 10.1016/j.jenvman.2023.118145. Epub 2023 May 19.

Abstract

Monitoring long-term variations in fine particulate matter (PM) is essential for environmental management and epidemiological studies. While satellite-based statistical/machine-learning methods can be used for estimating high-resolution ground-level PM concentration data, their applications have been hindered by limited accuracy in daily estimates during years without PM measurements and massive missing values due to satellite retrieval data. To address these issues, we developed a new spatiotemporal high-resolution PM hindcast modeling framework to generate the full-coverage, daily, 1-km PM data for China for the period 2000-2020 with improved accuracy. Our modeling framework incorporated information on changes in observation variables between periods with and without monitoring data and filled gaps in PM estimates induced by satellite data using imputed high-resolution aerosol data. Compared to previous hindcast studies, our method achieved superior overall cross-validation (CV) R and root-mean-square error (RMSE) of 0.90 and 12.94 μg/m and significantly improved the model performance in years without PM measurements, raising the leave-one-year-out CV R [RMSE] to 0.83 [12.10 μg/m] at a monthly scale (0.65 [23.29 μg/m] at a daily scale). Our long-term PM estimates show a sharp decline in PM exposure in recent years, but the national exposure level in 2020 still exceeded the first annual interim target of the 2021 World Health Organization air quality guidelines. The proposed hindcast framework represents a new strategy to improve air quality hindcast modeling and can be applied to other regions with limited air quality monitoring periods. These high-quality estimates can support both long- and short-term scientific research and environmental management of PM in China.

摘要

监测细颗粒物 (PM) 的长期变化对于环境管理和流行病学研究至关重要。虽然基于卫星的统计/机器学习方法可用于估计高分辨率地面 PM 浓度数据,但由于在没有 PM 测量的年份中日常估计的准确性有限,以及卫星检索数据中存在大量缺失值,其应用受到了限制。为了解决这些问题,我们开发了一种新的时空高分辨率 PM 回溯建模框架,以生成 2000-2020 年期间中国全覆盖、每日、1 公里 PM 数据,提高了准确性。我们的建模框架纳入了有监测数据和无监测数据期间观测变量变化的信息,并使用估算的高分辨率气溶胶数据填补了卫星数据引起的 PM 估计中的空白。与之前的回溯研究相比,我们的方法在整体交叉验证 (CV) R 和均方根误差 (RMSE) 方面取得了优异的成绩,分别为 0.90 和 12.94μg/m,并且在没有 PM 测量的年份中显著提高了模型性能,将每年一次的 CV R [RMSE]提高到每月 0.83 [12.10μg/m](每日 0.65 [23.29μg/m])。我们的长期 PM 估计显示,近年来 PM 暴露急剧下降,但 2020 年的全国暴露水平仍超过了 2021 年世界卫生组织空气质量指南的第一个年度中期目标。所提出的回溯框架代表了一种改进空气质量回溯建模的新策略,可应用于空气质量监测时间有限的其他地区。这些高质量的估计可以支持中国 PM 的长期和短期科学研究和环境管理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验