Suppr超能文献

工程化酿酒酵母生产葡萄糖酸。

Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.

机构信息

National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, Jiangsu, China.

Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, China.

出版信息

Appl Environ Microbiol. 2023 Jun 28;89(6):e0053523. doi: 10.1128/aem.00535-23. Epub 2023 May 22.

Abstract

Glucaric acid is a valuable chemical with applications in the detergent, polymer, pharmaceutical and food industries. In this study, two key enzymes for glucaric acid biosynthesis, MIOX4 (-inositol oxygenase) and Udh (uronate dehydrogenase), were fused and expressed with different peptide linkers. It was found that a strain harboring the fusion protein MIOX4-Udh linked by the peptide (EAK) produced the highest glucaric acid titer and thereby resulted in glucaric acid production that was 5.7-fold higher than that of the free enzymes. Next, the fusion protein MIOX4-Udh linked by (EAK) was integrated into delta sequence sites of the Saccharomyces cerevisiae mutant, and a strain, GA16, that produced a glucaric acid titer of 4.9 g/L in a shake flask fermentation was identified by a high-throughput screening method using an Escherichia coli glucaric acid biosensor. Strain improvement by further engineering was performed to regulate the metabolic flux of -inositol to increase the supply of glucaric acid precursors. The downregulation of and the overexpression of and increased glucaric acid production significantly, and glucaric acid production was increased to 8.49 g/L in the final strain GA-ZII in a shake flask fermentation. Finally, in a 5-L bioreactor, GA-ZII produced a glucaric acid titer of 15.6 g/L through fed-batch fermentation. Glucaric acid is a value-added dicarboxylic acid that was synthesized mainly through the oxidation of glucose chemically. Due to the problems of the low selectivity, by-products, and highly polluting waste of this process, producing glucaric acid biologically has attracted great attention. The activity of key enzymes and the intracellular -inositol level were both rate-limiting factors for glucaric acid biosynthesis. To increase glucaric acid production, this work improved the activity of the key enzymes in the glucaric acid biosynthetic pathway through the expression of a fusion of Arabidopsis thaliana MIOX4 and Pseudomonas syringae Udh as well as a delta sequence-based integration. Furthermore, intracellular -inositol flux was optimized by a series of metabolic strategies to increase the -inositol supply, which improved glucaric acid production to a higher level. This study provided a way for constructing a glucaric acid-producing strain with good synthetic performance, making glucaric acid production biologically in yeast cells much more competitive.

摘要

葡萄糖二酸是一种具有广泛应用价值的化学品,可用于洗涤剂、聚合物、制药和食品工业。在本研究中,我们融合并表达了两种葡萄糖二酸生物合成的关键酶,即 MIOX4(肌醇氧化酶)和 Udh(尿苷酸脱氢酶),并使用不同的肽接头连接。结果发现,与游离酶相比,含有通过(EAK)肽连接的融合蛋白 MIOX4-Udh 的菌株产生的葡萄糖二酸产量最高,达到 5.7 倍。接下来,通过高通量筛选方法,利用大肠杆菌葡萄糖二酸生物传感器,从 Saccharomyces cerevisiae 突变体的 delta 序列位点中整合了融合蛋白 MIOX4-Udh(EAK),鉴定出一株在摇瓶发酵中葡萄糖二酸产量为 4.9 g/L 的菌株 GA16。通过进一步工程改造来调节肌醇的代谢通量,增加葡萄糖二酸前体的供应,从而对菌株进行了改良。下调和过表达和显著增加了葡萄糖二酸的产量,最终在摇瓶发酵中,最终菌株 GA-ZII 的葡萄糖二酸产量增加到 8.49 g/L。最后,在 5 L 生物反应器中,通过分批补料发酵,GA-ZII 生产了 15.6 g/L 的葡萄糖二酸。葡萄糖二酸是一种附加值较高的二元羧酸,主要通过化学氧化葡萄糖合成。由于该过程的选择性低、副产物多、废物污染严重等问题,生物合成葡萄糖二酸引起了广泛关注。关键酶的活性和细胞内肌醇水平都是葡萄糖二酸生物合成的限速因素。为了提高葡萄糖二酸的产量,本工作通过表达拟南芥 MIOX4 和丁香假单胞菌 Udh 的融合蛋白以及基于 delta 序列的整合,提高了葡萄糖二酸生物合成途径中的关键酶的活性。此外,通过一系列代谢策略优化了细胞内肌醇通量,增加了肌醇的供应,进一步提高了葡萄糖二酸的产量。本研究为构建具有良好合成性能的葡萄糖二酸生产菌株提供了一种方法,使酵母细胞中生物合成葡萄糖二酸更具竞争力。

相似文献

1
Efficient Production of Glucaric Acid by Engineered Saccharomyces cerevisiae.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0053523. doi: 10.1128/aem.00535-23. Epub 2023 May 22.
2
3
[Engineering for efficient production of glucaric acid].
Sheng Wu Gong Cheng Xue Bao. 2022 Feb 25;38(2):705-718. doi: 10.13345/j.cjb.210151.
4
Effect of magnesium ions on glucaric acid production in the engineered Saccharomyces cerevisiae.
J Biotechnol. 2021 May 20;332:61-71. doi: 10.1016/j.jbiotec.2021.03.020. Epub 2021 Apr 1.
5
[Metabolic engineering of Saccharomyces cerevisiae for production of glucaric acid].
Sheng Wu Gong Cheng Xue Bao. 2017 Feb 25;33(2):228-236. doi: 10.13345/j.cjb.160287.
6
Porting the synthetic D-glucaric acid pathway from Escherichia coli to Saccharomyces cerevisiae.
Biotechnol J. 2016 Sep;11(9):1201-8. doi: 10.1002/biot.201500563. Epub 2016 Jun 29.
7
Enhancing glucaric acid production from -inositol in by eliminating cell-to-cell variation.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0014924. doi: 10.1128/aem.00149-24. Epub 2024 May 29.
8
Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli.
Appl Environ Microbiol. 2009 Feb;75(3):589-95. doi: 10.1128/AEM.00973-08. Epub 2008 Dec 5.
9
Production of D-glucaric acid with phosphoglucose isomerase-deficient Saccharomyces cerevisiae.
Biotechnol Lett. 2024 Feb;46(1):69-83. doi: 10.1007/s10529-023-03443-2. Epub 2023 Dec 8.

引用本文的文献

2
Metabolic engineering for microbial production of sugar acids.
BMC Biotechnol. 2025 May 13;25(1):36. doi: 10.1186/s12896-025-00973-7.
3
Consolidated bioprocessing of lignocellulosic wastes in Northwest China for D-glucaric acid production by an artificial microbial consortium.
Bioprocess Biosyst Eng. 2024 Dec;47(12):1999-2010. doi: 10.1007/s00449-024-03081-6. Epub 2024 Aug 19.
4
Cell factories for biosynthesis of D-glucaric acid: a fusion of static and dynamic strategies.
World J Microbiol Biotechnol. 2024 Aug 8;40(10):292. doi: 10.1007/s11274-024-04097-6.
5
New advances in protein engineering for industrial applications: Key takeaways.
Open Life Sci. 2024 Jun 17;19(1):20220856. doi: 10.1515/biol-2022-0856. eCollection 2024.
6
Enhancing glucaric acid production from -inositol in by eliminating cell-to-cell variation.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0014924. doi: 10.1128/aem.00149-24. Epub 2024 May 29.
7
Production of D-glucaric acid with phosphoglucose isomerase-deficient Saccharomyces cerevisiae.
Biotechnol Lett. 2024 Feb;46(1):69-83. doi: 10.1007/s10529-023-03443-2. Epub 2023 Dec 8.

本文引用的文献

1
Vitreoscilla hemoglobin enhances the catalytic performance of industrial oxidases in vitro.
Appl Microbiol Biotechnol. 2022 May;106(9-10):3657-3667. doi: 10.1007/s00253-022-11974-3. Epub 2022 May 17.
3
4
Effect of magnesium ions on glucaric acid production in the engineered Saccharomyces cerevisiae.
J Biotechnol. 2021 May 20;332:61-71. doi: 10.1016/j.jbiotec.2021.03.020. Epub 2021 Apr 1.
5
8
Enhancement of glucaric acid production in Saccharomyces cerevisiae by expressing Vitreoscilla hemoglobin.
Biotechnol Lett. 2020 Nov;42(11):2169-2178. doi: 10.1007/s10529-020-02966-2. Epub 2020 Jul 20.
9
Investigation of Heterologously Expressed Glucose-6-Phosphate Dehydrogenase Genes in a Yeast Deletion.
Microorganisms. 2020 Apr 9;8(4):546. doi: 10.3390/microorganisms8040546.
10
Enzymatic production of 4--methyl d-glucaric acid from hardwood xylan.
Biotechnol Biofuels. 2020 Mar 13;13:51. doi: 10.1186/s13068-020-01691-2. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验