Suppr超能文献

琼脂糖包埋在无膜渗透保护剂的情况下对哺乳动物细胞冷冻保存提供保护的理化机制。

Physicochemical Mechanisms of Protection Offered by Agarose Encapsulation during Cryopreservation of Mammalian Cells in the Absence of Membrane-Penetrating Cryoprotectants.

机构信息

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, United States.

出版信息

ACS Appl Bio Mater. 2023 Jun 19;6(6):2226-2236. doi: 10.1021/acsabm.3c00098. Epub 2023 May 22.

Abstract

During freeze/thaw, cells are exposed to mechanical, thermal, chemical, and osmotic stresses, which cause loss of viability and function. Cryopreservation agents such as dimethyl sulfoxide (DMSO) are deployed to minimize freeze/thaw damage. However, there is a pressing need to eliminate DMSO from cryopreservation solutions due to its adverse effects. This is of the highest priority especially for cryopreservation of infusible/transplantable cell therapy products. In order to address this issue, we introduce reversible encapsulation in agarose hydrogels in the presence of the membrane-impermeable cryoprotectant, trehalose, as a viable, safe, and effective cryopreservation method. Our findings, which are supported by IR spectroscopy and differential scanning calorimetry analyses, demonstrate that encapsulation in 0.75% agarose hydrogels containing 10-20% trehalose inhibits mechanical damage induced by eutectic phase change, devitrification, and recrystallization, resulting in post-thaw viability comparable to the gold standard 10% DMSO.

摘要

在冷冻/解冻过程中,细胞会受到机械、热、化学和渗透压力的影响,从而导致活力和功能丧失。二甲亚砜(DMSO)等冷冻保护剂的应用可以最大限度地减少冷冻/解冻损伤。然而,由于 DMSO 的不良反应,迫切需要从冷冻保存溶液中去除 DMSO。这对于输注/可移植细胞治疗产品的冷冻保存尤为重要。为了解决这个问题,我们在膜不可渗透的冷冻保护剂海藻糖存在的情况下,在琼脂糖水凝胶中引入了可逆包封,作为一种可行、安全和有效的冷冻保存方法。我们的研究结果得到了红外光谱和差示扫描量热分析的支持,表明在含有 10-20%海藻糖的 0.75%琼脂糖水凝胶中进行包封可以抑制共晶相变化、玻璃化和再结晶引起的机械损伤,从而使解冻后的活力与 10%DMSO 的金标准相当。

相似文献

2
Hydrogel encapsulation facilitates a low-concentration cryoprotectant for cryopreservation of mouse testicular tissue.
Colloids Surf B Biointerfaces. 2024 Oct;242:114096. doi: 10.1016/j.colsurfb.2024.114096. Epub 2024 Jul 14.
3
Inhibiting ice recrystallization and optimization of cell viability after cryopreservation.
Glycobiology. 2012 Jan;22(1):123-33. doi: 10.1093/glycob/cwr115. Epub 2011 Aug 17.
6
Trehalose glycopolymers for cryopreservation of tissue-engineered constructs.
Cryobiology. 2022 Feb;104:47-55. doi: 10.1016/j.cryobiol.2021.11.004. Epub 2021 Nov 17.
8
Cell Damage Mechanisms during Cryopreservation in a Zwitterion Solution and Its Alleviation by DMSO.
J Phys Chem B. 2024 Apr 25;128(16):3904-3909. doi: 10.1021/acs.jpcb.3c07773. Epub 2024 Apr 13.
9
Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells.
Artif Cells Nanomed Biotechnol. 2017 May;45(3):609-616. doi: 10.3109/21691401.2016.1167698. Epub 2016 Apr 6.

引用本文的文献

1
Cryopreservation of human lung tissue for 3D ex vivo analysis.
Respir Res. 2025 May 15;26(1):187. doi: 10.1186/s12931-025-03265-y.
2
The cryopreservation conundrum in human ARTs: Too much of a not-so-good thing.
J Assist Reprod Genet. 2023 Aug;40(8):1785-1786. doi: 10.1007/s10815-023-02889-7.

本文引用的文献

1
Cryopreserved PM21-Particle-Expanded Natural Killer Cells Maintain Cytotoxicity and Effector Functions and .
Front Immunol. 2022 Apr 7;13:861681. doi: 10.3389/fimmu.2022.861681. eCollection 2022.
2
hDPSC-laden GelMA microspheres fabricated using electrostatic microdroplet method for endodontic regeneration.
Mater Sci Eng C Mater Biol Appl. 2021 Feb;121:111850. doi: 10.1016/j.msec.2020.111850. Epub 2021 Jan 6.
3
Characterization of Phosphate Buffered Saline (PBS) in Frozen State and after Freeze-Drying.
Pharm Res. 2019 May 13;36(7):98. doi: 10.1007/s11095-019-2619-2.
4
Bioinspired Preservation of Natural Killer Cells for Cancer Immunotherapy.
Adv Sci (Weinh). 2019 Jan 27;6(6):1802045. doi: 10.1002/advs.201802045. eCollection 2019 Mar 20.
5
FTIR Analysis of Molecular Changes Associated with Warming Injury in Cryopreserved Leukocytes.
Langmuir. 2019 Jun 11;35(23):7552-7559. doi: 10.1021/acs.langmuir.8b02982. Epub 2018 Nov 16.
6
Hydrogel Cryopreservation System: An Effective Method for Cell Storage.
Int J Mol Sci. 2018 Oct 25;19(11):3330. doi: 10.3390/ijms19113330.
7
Optimization of Large-Scale Expansion and Cryopreservation of Human Natural Killer Cells for Anti-Tumor Therapy.
Immune Netw. 2018 Aug 21;18(4):e31. doi: 10.4110/in.2018.18.e31. eCollection 2018 Aug.
8
Advances in the slow freezing cryopreservation of microencapsulated cells.
J Control Release. 2018 Jul 10;281:119-138. doi: 10.1016/j.jconrel.2018.05.016. Epub 2018 May 19.
10
Tunable injectable alginate-based hydrogel for cell therapy in Type 1 Diabetes Mellitus.
Int J Biol Macromol. 2018 Feb;107(Pt A):1261-1269. doi: 10.1016/j.ijbiomac.2017.09.103. Epub 2017 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验