Suppr超能文献

利用机器学习和光相干断层扫描血管造影术检测系统性心血管疾病和心脏代谢危险因素:一项初步研究。

Detection of systemic cardiovascular illnesses and cardiometabolic risk factors with machine learning and optical coherence tomography angiography: a pilot study.

机构信息

South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, Adelaide, SA, Australia.

Department of Neurology, Royal Adelaide Hospital, Adelaide, SA, Australia.

出版信息

Eye (Lond). 2023 Dec;37(17):3629-3633. doi: 10.1038/s41433-023-02570-4. Epub 2023 May 23.

Abstract

BACKGROUND/OBJECTIVES: Optical coherence tomography angiography (OCTA) has been found to identify changes in the retinal microvasculature of people with various cardiometabolic factors. Machine learning has previously been applied within ophthalmic imaging but has not yet been applied to these risk factors. The study aims to assess the feasibility of predicting the presence or absence of cardiovascular conditions and their associated risk factors using machine learning and OCTA.

METHODS

Cross-sectional study. Demographic and co-morbidity data was collected for each participant undergoing 3 × 3 mm, 6 × 6 mm and 8 × 8 mm OCTA scanning using the Carl Zeiss CIRRUS HD-OCT model 5000. The data was then pre-processed and randomly split into training and testing datasets (75%/25% split) before being applied to two models (Convolutional Neural Network and MoblieNetV2). Once developed on the training dataset, their performance was assessed on the unseen test dataset.

RESULTS

Two hundred forty-seven participants were included. Both models performed best in predicting the presence of hyperlipidaemia in 3 × 3 mm scans with an AUC of 0.74 and 0.81, and accuracy of 0.79 for CNN and MobileNetV2 respectively. Modest performance was achieved in the identification of diabetes mellitus, hypertension and congestive heart failure in 3 × 3 mm scans (all with AUC and accuracy >0.5). There was no significant recognition for 6 × 6 and 8 × 8 mm for any cardiometabolic risk factor.

CONCLUSION

This study demonstrates the strength of ML to identify the presence cardiometabolic factors, in particular hyperlipidaemia, in high-resolution 3 × 3 mm OCTA scans. Early detection of risk factors prior to a clinically significant event, will assist in preventing adverse outcomes for people.

摘要

背景/目的:光学相干断层扫描血管造影术(OCTA)已被发现可识别患有各种心脏代谢因素的人的视网膜微血管变化。机器学习以前曾应用于眼科成像,但尚未应用于这些危险因素。本研究旨在评估使用机器学习和 OCTA 预测心血管疾病及其相关危险因素存在与否的可行性。

方法

横断面研究。对每位接受 3×3mm、6×6mm 和 8×8mm OCTA 扫描的参与者进行人口统计学和合并症数据收集,使用 Carl Zeiss CIRRUS HD-OCT 模型 5000。然后对数据进行预处理,并将其随机分为训练和测试数据集(75%/25% 分割),然后应用于两个模型(卷积神经网络和 MoblieNetV2)。在训练数据集上开发后,在未见的测试数据集上评估其性能。

结果

共纳入 247 名参与者。两种模型在预测 3×3mm 扫描中高脂血症的存在方面表现最佳,AUC 分别为 0.74 和 0.81,CNN 和 MoblieNetV2 的准确性分别为 0.79。在 3×3mm 扫描中识别糖尿病、高血压和充血性心力衰竭的表现中等(所有 AUC 和准确性均>0.5)。对于任何心脏代谢危险因素,6×6 和 8×8mm 均无明显识别。

结论

本研究证明了 ML 识别高分辨率 3×3mm OCTA 扫描中心血管代谢因素(特别是高脂血症)存在的强大能力。在临床意义显著事件之前早期检测危险因素,将有助于预防人们的不良后果。

相似文献

7
Wide-field optical coherence tomography angiography for the detection of proliferative diabetic retinopathy.
Graefes Arch Clin Exp Ophthalmol. 2020 Sep;258(9):1901-1909. doi: 10.1007/s00417-020-04773-x. Epub 2020 May 30.
8
Machine learning in optical coherence tomography angiography.
Exp Biol Med (Maywood). 2021 Oct;246(20):2170-2183. doi: 10.1177/15353702211026581. Epub 2021 Jul 19.
10
Different Effect of Media Opacity on Vessel Density Measured by Different Optical Coherence Tomography Angiography Algorithms.
Transl Vis Sci Technol. 2020 Jul 13;9(8):19. doi: 10.1167/tvst.9.8.19. eCollection 2020 Jul.

引用本文的文献

1
Machine Learning Prediction of Cardiovascular Risk in Type 1 Diabetes Mellitus Using Radiomic Features from Multimodal Retinal Images.
Ophthalmol Sci. 2025 Jul 4;5(6):100874. doi: 10.1016/j.xops.2025.100874. eCollection 2025 Nov-Dec.
3
Retinal Microvascular Characteristics-Novel Risk Stratification in Cardiovascular Diseases.
Diagnostics (Basel). 2025 Apr 23;15(9):1073. doi: 10.3390/diagnostics15091073.
4
Diagnostic and therapeutic optical imaging in cardiovascular diseases.
iScience. 2024 Oct 22;27(11):111216. doi: 10.1016/j.isci.2024.111216. eCollection 2024 Nov 15.
5
Optical coherence tomography angiography in cardiovascular disease.
Prog Cardiovasc Dis. 2024 Nov-Dec;87:60-72. doi: 10.1016/j.pcad.2024.10.011. Epub 2024 Oct 21.

本文引用的文献

1
Current status of clinical research using artificial intelligence techniques: A registry-based audit.
Perspect Clin Res. 2021 Jan-Mar;12(1):48-52. doi: 10.4103/picr.PICR_25_20. Epub 2021 Jan 8.
4
Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy.
Transl Vis Sci Technol. 2020 Jul 2;9(2):35. doi: 10.1167/tvst.9.2.35. eCollection 2020 Jul.
6
Ensemble Deep Learning for Diabetic Retinopathy Detection Using Optical Coherence Tomography Angiography.
Transl Vis Sci Technol. 2020 Apr 13;9(2):20. doi: 10.1167/tvst.9.2.20. eCollection 2020 Apr.
7
Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning.
Biomed Opt Express. 2020 Jan 14;11(2):927-944. doi: 10.1364/BOE.379977. eCollection 2020 Feb 1.
10
Automated OCT angiography image quality assessment using a deep learning algorithm.
Graefes Arch Clin Exp Ophthalmol. 2019 Aug;257(8):1641-1648. doi: 10.1007/s00417-019-04338-7. Epub 2019 May 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验