South Australian Institute of Ophthalmology, The University of Adelaide and Royal Adelaide Hospital, Adelaide, SA, Australia.
Department of Neurology, Royal Adelaide Hospital, Adelaide, SA, Australia.
Eye (Lond). 2023 Dec;37(17):3629-3633. doi: 10.1038/s41433-023-02570-4. Epub 2023 May 23.
BACKGROUND/OBJECTIVES: Optical coherence tomography angiography (OCTA) has been found to identify changes in the retinal microvasculature of people with various cardiometabolic factors. Machine learning has previously been applied within ophthalmic imaging but has not yet been applied to these risk factors. The study aims to assess the feasibility of predicting the presence or absence of cardiovascular conditions and their associated risk factors using machine learning and OCTA.
Cross-sectional study. Demographic and co-morbidity data was collected for each participant undergoing 3 × 3 mm, 6 × 6 mm and 8 × 8 mm OCTA scanning using the Carl Zeiss CIRRUS HD-OCT model 5000. The data was then pre-processed and randomly split into training and testing datasets (75%/25% split) before being applied to two models (Convolutional Neural Network and MoblieNetV2). Once developed on the training dataset, their performance was assessed on the unseen test dataset.
Two hundred forty-seven participants were included. Both models performed best in predicting the presence of hyperlipidaemia in 3 × 3 mm scans with an AUC of 0.74 and 0.81, and accuracy of 0.79 for CNN and MobileNetV2 respectively. Modest performance was achieved in the identification of diabetes mellitus, hypertension and congestive heart failure in 3 × 3 mm scans (all with AUC and accuracy >0.5). There was no significant recognition for 6 × 6 and 8 × 8 mm for any cardiometabolic risk factor.
This study demonstrates the strength of ML to identify the presence cardiometabolic factors, in particular hyperlipidaemia, in high-resolution 3 × 3 mm OCTA scans. Early detection of risk factors prior to a clinically significant event, will assist in preventing adverse outcomes for people.
背景/目的:光学相干断层扫描血管造影术(OCTA)已被发现可识别患有各种心脏代谢因素的人的视网膜微血管变化。机器学习以前曾应用于眼科成像,但尚未应用于这些危险因素。本研究旨在评估使用机器学习和 OCTA 预测心血管疾病及其相关危险因素存在与否的可行性。
横断面研究。对每位接受 3×3mm、6×6mm 和 8×8mm OCTA 扫描的参与者进行人口统计学和合并症数据收集,使用 Carl Zeiss CIRRUS HD-OCT 模型 5000。然后对数据进行预处理,并将其随机分为训练和测试数据集(75%/25% 分割),然后应用于两个模型(卷积神经网络和 MoblieNetV2)。在训练数据集上开发后,在未见的测试数据集上评估其性能。
共纳入 247 名参与者。两种模型在预测 3×3mm 扫描中高脂血症的存在方面表现最佳,AUC 分别为 0.74 和 0.81,CNN 和 MoblieNetV2 的准确性分别为 0.79。在 3×3mm 扫描中识别糖尿病、高血压和充血性心力衰竭的表现中等(所有 AUC 和准确性均>0.5)。对于任何心脏代谢危险因素,6×6 和 8×8mm 均无明显识别。
本研究证明了 ML 识别高分辨率 3×3mm OCTA 扫描中心血管代谢因素(特别是高脂血症)存在的强大能力。在临床意义显著事件之前早期检测危险因素,将有助于预防人们的不良后果。