Suppr超能文献

inflammasome 的全景:激活机制、细胞死亡与疾病。

A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases.

机构信息

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Cell. 2023 May 25;186(11):2288-2312. doi: 10.1016/j.cell.2023.04.025.

Abstract

Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.

摘要

炎症小体是先天免疫系统的关键传感器,通过识别被称为病原体相关分子模式 (PAMPs) 或细胞内稳态破坏的分子(称为内稳态改变分子过程 [HAMPs] 或效应物触发的免疫 [ETI]),对宿主的威胁做出反应。几种不同的蛋白质可引发炎症小体,包括 NLRP1、CARD8、NLRP3、NLRP6、NLRC4/NAIP、AIM2、pyrin 和 caspase-4/-5/-11。这种多样化的传感器通过冗余性和可塑性增强了炎症小体的反应。在这里,我们概述了这些途径,阐述了炎症小体形成、细胞内调节和细胞焦亡的机制,并讨论了炎症小体在人类疾病中的广泛影响。

相似文献

1
A 360° view of the inflammasome: Mechanisms of activation, cell death, and diseases.
Cell. 2023 May 25;186(11):2288-2312. doi: 10.1016/j.cell.2023.04.025.
2
Mechanistic insights from inflammasome structures.
Nat Rev Immunol. 2024 Jul;24(7):518-535. doi: 10.1038/s41577-024-00995-w. Epub 2024 Feb 19.
4
Integrated NLRP3, AIM2, NLRC4, Pyrin inflammasome activation and assembly drive PANoptosis.
Cell Mol Immunol. 2023 Dec;20(12):1513-1526. doi: 10.1038/s41423-023-01107-9. Epub 2023 Nov 27.
5
Innate immune sensor NLRP3 drives PANoptosome formation and PANoptosis.
J Immunol. 2025 Apr 18. doi: 10.1093/jimmun/vkaf042.
6
The non-structural protein of SFTSV activates NLRP1 and CARD8 inflammasome through disrupting the DPP9-mediated ternary complex.
PLoS Pathog. 2025 Jul 3;21(7):e1013258. doi: 10.1371/journal.ppat.1013258. eCollection 2025 Jul.
8
Recent advances in inflammasome biology.
Curr Opin Immunol. 2018 Feb;50:32-38. doi: 10.1016/j.coi.2017.10.011. Epub 2017 Nov 10.
9
FCV activates NLRP3 inflammasome through ion-dependent pathway to promote IL-1β secretion.
Vet Microbiol. 2025 Aug;307:110628. doi: 10.1016/j.vetmic.2025.110628. Epub 2025 Jun 28.

引用本文的文献

1
Discovery of potent and selective inhibitors of human NLRP3 with a novel mechanism of action.
J Exp Med. 2025 Nov 3;222(11). doi: 10.1084/jem.20242403. Epub 2025 Sep 2.
2
A Potent Inhibitor of Caspase‑8 Based on the IL-18 Tetrapeptide Sequence Reveals Shared Specificities between Inflammatory and Apoptotic Initiator Caspases.
ACS Bio Med Chem Au. 2025 Jul 2;5(4):565-581. doi: 10.1021/acsbiomedchemau.4c00146. eCollection 2025 Aug 20.
3
Proton-activated chloride channel governs phagosome-mediated antibacterial immunity in peritoneal macrophages.
J Exp Med. 2025 Nov 3;222(11). doi: 10.1084/jem.20250312. Epub 2025 Aug 22.
4
Metabolic regulation of immunological aging.
Nat Aging. 2025 Aug;5(8):1425-1440. doi: 10.1038/s43587-025-00921-2. Epub 2025 Aug 14.
5
Pyroptosis in gastric mucosal injury‑related diseases (Review).
Int J Mol Med. 2025 Oct;56(4). doi: 10.3892/ijmm.2025.5606. Epub 2025 Aug 8.
10
The Role of Protein Ubiquitination in the Onset and Progression of Sepsis.
Cells. 2025 Jul 2;14(13):1012. doi: 10.3390/cells14131012.

本文引用的文献

1
Disruptions in endocytic traffic contribute to the activation of the NLRP3 inflammasome.
Sci Signal. 2023 Feb 21;16(773):eabm7134. doi: 10.1126/scisignal.abm7134.
2
Activation of the NLRP1 inflammasome in human keratinocytes by the dsDNA mimetic poly(dA:dT).
Proc Natl Acad Sci U S A. 2023 Jan 31;120(5):e2213777120. doi: 10.1073/pnas.2213777120. Epub 2023 Jan 24.
3
An epithelial-immune circuit amplifies inflammasome and IL-6 responses to SARS-CoV-2.
Cell Host Microbe. 2023 Feb 8;31(2):243-259.e6. doi: 10.1016/j.chom.2022.12.005. Epub 2022 Dec 9.
4
Distinct changes in endosomal composition promote NLRP3 inflammasome activation.
Nat Immunol. 2023 Jan;24(1):30-41. doi: 10.1038/s41590-022-01355-3. Epub 2022 Nov 28.
5
Cryo-EM structures of the active NLRP3 inflammasome disc.
Nature. 2023 Jan;613(7944):595-600. doi: 10.1038/s41586-022-05570-8. Epub 2022 Nov 28.
6
IKKβ primes inflammasome formation by recruiting NLRP3 to the trans-Golgi network.
Immunity. 2022 Dec 13;55(12):2271-2284.e7. doi: 10.1016/j.immuni.2022.10.021. Epub 2022 Nov 15.
7
Oxidized thioredoxin-1 restrains the NLRP1 inflammasome.
Sci Immunol. 2022 Nov 11;7(77):eabm7200. doi: 10.1126/sciimmunol.abm7200. Epub 2022 Nov 4.
8
P38 kinases mediate NLRP1 inflammasome activation after ribotoxic stress response and virus infection.
J Exp Med. 2023 Jan 2;220(1). doi: 10.1084/jem.20220837. Epub 2022 Oct 31.
9
PANoptosis: A Unique Innate Immune Inflammatory Cell Death Modality.
J Immunol. 2022 Nov 1;209(9):1625-1633. doi: 10.4049/jimmunol.2200508.
10
DPP9 deficiency: An inflammasomopathy that can be rescued by lowering NLRP1/IL-1 signaling.
Sci Immunol. 2022 Sep 16;7(75):eabi4611. doi: 10.1126/sciimmunol.abi4611.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验