Suppr超能文献

植物中的谷氨酰胺代谢、感应和信号转导。

Glutamine Metabolism, Sensing and Signaling in Plants.

机构信息

Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan.

Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.

出版信息

Plant Cell Physiol. 2023 Dec 21;64(12):1466-1481. doi: 10.1093/pcp/pcad054.

Abstract

Glutamine (Gln) is the first amino acid synthesized in nitrogen (N) assimilation in plants. Gln synthetase (GS), converting glutamate (Glu) and NH4+ into Gln at the expense of ATP, is one of the oldest enzymes in all life domains. Plants have multiple GS isoenzymes that work individually or cooperatively to ensure that the Gln supply is sufficient for plant growth and development under various conditions. Gln is a building block for protein synthesis and an N-donor for the biosynthesis of amino acids, nucleic acids, amino sugars and vitamin B coenzymes. Most reactions using Gln as an N-donor are catalyzed by Gln amidotransferase (GAT) that hydrolyzes Gln to Glu and transfers the amido group of Gln to an acceptor substrate. Several GAT domain-containing proteins of unknown function in the reference plant Arabidopsis thaliana suggest that some metabolic fates of Gln have yet to be identified in plants. In addition to metabolism, Gln signaling has emerged in recent years. The N regulatory protein PII senses Gln to regulate arginine biosynthesis in plants. Gln promotes somatic embryogenesis and shoot organogenesis with unknown mechanisms. Exogenous Gln has been implicated in activating stress and defense responses in plants. Likely, Gln signaling is responsible for some of the new Gln functions in plants.

摘要

谷氨酰胺(Gln)是植物中氮(N)同化过程中合成的第一种氨基酸。谷氨酰胺合成酶(GS)利用 ATP 将谷氨酸(Glu)和 NH4+转化为 Gln,是所有生命领域中最古老的酶之一。植物有多种 GS 同工酶,它们单独或协同工作,以确保 Gln 的供应在各种条件下足以满足植物的生长和发育。Gln 是蛋白质合成的结构单元,也是氨基酸、核酸、氨基糖和维生素 B 辅酶生物合成的 N 供体。大多数以 Gln 作为 N 供体的反应都是由 Gln 酰胺转移酶(GAT)催化的,该酶将 Gln 水解为 Glu,并将 Gln 的酰胺基转移到受体底物上。拟南芥等参考植物中一些具有未知功能的含 GAT 结构域蛋白表明,植物中 Gln 的一些代谢途径尚未被发现。除了代谢之外,近年来 Gln 信号转导也逐渐受到关注。N 调节蛋白 PII 感知 Gln,以调节植物中精氨酸的生物合成。Gln 以未知的机制促进体细胞胚胎发生和芽器官发生。外源 Gln 被认为可以激活植物的应激和防御反应。很可能,Gln 信号转导负责植物中 Gln 的一些新功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验