Suppr超能文献

人工智能(AI)结果不正确会对放射科医生产生影响吗?如果有影响,我们能做些什么?一项使用胸部 X 线摄影检测肺癌的多读者初步研究。

Can incorrect artificial intelligence (AI) results impact radiologists, and if so, what can we do about it? A multi-reader pilot study of lung cancer detection with chest radiography.

机构信息

Department of Diagnostic Imaging, Warren Alpert Medical School of Brown University, Providence, RI, USA.

Rhode Island Hospital, Providence, RI, USA.

出版信息

Eur Radiol. 2023 Nov;33(11):8263-8269. doi: 10.1007/s00330-023-09747-1. Epub 2023 Jun 2.

Abstract

OBJECTIVE

To examine whether incorrect AI results impact radiologist performance, and if so, whether human factors can be optimized to reduce error.

METHODS

Multi-reader design, 6 radiologists interpreted 90 identical chest radiographs (follow-up CT needed: yes/no) on four occasions (09/20-01/22). No AI result was provided for session 1. Sham AI results were provided for sessions 2-4, and AI for 12 cases were manipulated to be incorrect (8 false positives (FP), 4 false negatives (FN)) (0.87 ROC-AUC). In the Delete AI (No Box) condition, radiologists were told AI results would not be saved for the evaluation. In Keep AI (No Box) and Keep AI (Box), radiologists were told results would be saved. In Keep AI (Box), the ostensible AI program visually outlined the region of suspicion. AI results were constant between conditions.

RESULTS

Relative to the No AI condition (FN = 2.7%, FP = 51.4%), FN and FPs were higher in the Keep AI (No Box) (FN = 33.0%, FP = 86.0%), Delete AI (No Box) (FN = 26.7%, FP = 80.5%), and Keep AI (Box) (FN = to 20.7%, FP = 80.5%) conditions (all ps < 0.05). FNs were higher in the Keep AI (No Box) condition (33.0%) than in the Keep AI (Box) condition (20.7%) (p = 0.04). FPs were higher in the Keep AI (No Box) (86.0%) condition than in the Delete AI (No Box) condition (80.5%) (p = 0.03).

CONCLUSION

Incorrect AI causes radiologists to make incorrect follow-up decisions when they were correct without AI. This effect is mitigated when radiologists believe AI will be deleted from the patient's file or a box is provided around the region of interest.

CLINICAL RELEVANCE STATEMENT

When AI is wrong, radiologists make more errors than they would have without AI. Based on human factors psychology, our manuscript provides evidence for two AI implementation strategies that reduce the deleterious effects of incorrect AI.

KEY POINTS

• When AI provided incorrect results, false negative and false positive rates among the radiologists increased. • False positives decreased when AI results were deleted, versus kept, in the patient's record. • False negatives and false positives decreased when AI visually outlined the region of suspicion.

摘要

目的

研究人工智能(AI)错误结果是否会影响放射科医生的表现,以及是否可以通过优化人为因素来减少错误。

方法

多读者设计,6 名放射科医生在四个阶段(09/20-01/22)共解读了 90 张相同的胸部 X 光片(是否需要随访 CT:是/否)。第一阶段未提供 AI 结果。第二至第四阶段提供了虚假的 AI 结果,对 12 例 AI 结果进行了错误处理(8 个假阳性(FP),4 个假阴性(FN))(ROC-AUC 为 0.87)。在删除 AI(无框)条件下,告知放射科医生不会保存 AI 结果进行评估。在保留 AI(无框)和保留 AI(有框)条件下,告知放射科医生将保存结果。在保留 AI(有框)条件下,看似 AI 程序会对可疑区域进行视觉标记。在各种条件下,AI 结果保持不变。

结果

与无 AI 条件(FN=2.7%,FP=51.4%)相比,保留 AI(无框)(FN=33.0%,FP=86.0%)、删除 AI(无框)(FN=26.7%,FP=80.5%)和保留 AI(有框)(FN=20.7%,FP=80.5%)条件下 FN 和 FP 更高(均 p<0.05)。保留 AI(无框)条件下 FN(33.0%)高于保留 AI(有框)条件(20.7%)(p=0.04)。保留 AI(无框)条件下 FP(86.0%)高于删除 AI(无框)条件(80.5%)(p=0.03)。

结论

当 AI 提供错误结果时,放射科医生在没有 AI 的情况下会做出错误的随访决策。当放射科医生认为 AI 将从患者的档案中删除或为感兴趣区域提供框时,这种影响会减轻。

临床相关性声明

当 AI 出错时,放射科医生的错误比没有 AI 时更多。基于人为因素心理学,我们的论文提供了两种 AI 实施策略的证据,这两种策略可以减少错误 AI 的有害影响。

要点

• 当 AI 提供错误结果时,放射科医生的假阴性和假阳性率增加。• 当 AI 结果在患者记录中被删除时,假阳性减少。• AI 视觉标记可疑区域时,假阴性和假阳性减少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abe9/10598073/8cd13222bb59/330_2023_9747_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验