Suppr超能文献

通过对蛋白质进行有限的深度测序进行系统的构象-表型映射。

Systematic conformation-to-phenotype mapping via limited deep sequencing of proteins.

机构信息

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

出版信息

Mol Cell. 2023 Jun 1;83(11):1936-1952.e7. doi: 10.1016/j.molcel.2023.05.006.

Abstract

Non-native conformations drive protein-misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.

摘要

非天然构象驱动蛋白质错误折叠疾病,使生物工程复杂化,并推动分子进化。目前没有一种实验技术能很好地阐明这些构象及其表型效应。特别是由固有无序蛋白质组成的瞬态构象更是难以捉摸。我们描述了一种系统发现、稳定和纯化天然和非天然构象的方法,这些构象可以在体外或体内产生,并直接将构象与分子、机体或进化表型联系起来。这种方法涉及整个蛋白质的高通量二硫键扫描(HTDS)。为了揭示哪些二硫键捕获哪些色谱可分辨的构象,我们设计了一种用于蛋白质双 Cys 变体文库的深度测序方法,该方法可以精确且同时定位每个多肽中的两个 Cys 残基。对丰富的大肠杆菌周质伴侣蛋白 HdeA 的 HTDS 揭示了不同类别的无序疏水性构象,其细胞毒性取决于骨干交联的位置。HTDS 可以为许多在二硫键允许的环境中发挥作用的蛋白质架起构象和表型景观之间的桥梁。

相似文献

1
Systematic conformation-to-phenotype mapping via limited deep sequencing of proteins.
Mol Cell. 2023 Jun 1;83(11):1936-1952.e7. doi: 10.1016/j.molcel.2023.05.006.
3
Engineered pathways for correct disulfide bond oxidation.
Antioxid Redox Signal. 2011 Jun 15;14(12):2399-412. doi: 10.1089/ars.2010.3782. Epub 2011 Mar 31.
4
Chaperone-mediated native folding of a β-scorpion toxin in the periplasm of Escherichia coli.
Biochim Biophys Acta. 2014 Jan;1840(1):10-5. doi: 10.1016/j.bbagen.2013.08.021. Epub 2013 Aug 30.
5
7
In vivo substrate specificity of periplasmic disulfide oxidoreductases.
J Biol Chem. 2004 Mar 26;279(13):12967-73. doi: 10.1074/jbc.M311391200. Epub 2004 Jan 15.
8
The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli.
Redox Biol. 2023 Aug;64:102800. doi: 10.1016/j.redox.2023.102800. Epub 2023 Jun 26.
9
Disulfide Bond Formation in the Periplasm of .
EcoSal Plus. 2019 Feb;8(2). doi: 10.1128/ecosalplus.ESP-0012-2018.
10
Engineering antibody fragments to fold in the absence of disulfide bonds.
Protein Sci. 2009 Feb;18(2):259-67. doi: 10.1002/pro.31.

引用本文的文献

1
Cotranslational protein folding through non-native structural intermediates.
Sci Adv. 2025 Sep 5;11(36):eady2211. doi: 10.1126/sciadv.ady2211.

本文引用的文献

1
Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device.
Science. 2022 Oct 14;378(6616):186-192. doi: 10.1126/science.abo7651. Epub 2022 Oct 13.
2
A modular approach to map out the conformational landscapes of unbound intrinsically disordered proteins.
Proc Natl Acad Sci U S A. 2022 Jun 7;119(23):e2113572119. doi: 10.1073/pnas.2113572119. Epub 2022 Jun 3.
3
Context-Dependence of the Reactivity of Cysteine and Lysine Residues.
Chembiochem. 2022 Jul 19;23(14):e202200258. doi: 10.1002/cbic.202200258. Epub 2022 Jun 1.
4
Structure Optimization of the Toxic Conformation Model of Amyloid β42 by Intramolecular Disulfide Bond Formation.
Chembiochem. 2022 Apr 20;23(8):e202200029. doi: 10.1002/cbic.202200029. Epub 2022 Mar 3.
5
The Cytotoxicity and Clearance of Mutant Huntingtin and Other Misfolded Proteins.
Cells. 2021 Oct 21;10(11):2835. doi: 10.3390/cells10112835.
6
Expression level is a major modifier of the fitness landscape of a protein coding gene.
Nat Ecol Evol. 2022 Jan;6(1):103-115. doi: 10.1038/s41559-021-01578-x. Epub 2021 Nov 18.
7
Multiple rereads of single proteins at single-amino acid resolution using nanopores.
Science. 2021 Dec 17;374(6574):1509-1513. doi: 10.1126/science.abl4381. Epub 2021 Nov 4.
8
In-Cell Sensitivity-Enhanced NMR of Intact Viable Mammalian Cells.
J Am Chem Soc. 2021 Nov 10;143(44):18454-18466. doi: 10.1021/jacs.1c06680. Epub 2021 Nov 1.
9
Single-molecule mechanical fingerprinting with DNA nanoswitch calipers.
Nat Nanotechnol. 2021 Dec;16(12):1362-1370. doi: 10.1038/s41565-021-00979-0. Epub 2021 Oct 21.
10
Removal of disulfide from acid stress chaperone HdeA does not wholly eliminate structure or function at low pH.
Biochem Biophys Rep. 2021 Jul 1;27:101064. doi: 10.1016/j.bbrep.2021.101064. eCollection 2021 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验