Suppr超能文献

单细胞分辨率下的胶质母细胞瘤异质性。

Glioblastoma heterogeneity at single cell resolution.

机构信息

The Brown Center for Immunotherapy, Department of Medicine, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.

出版信息

Oncogene. 2023 Jun;42(27):2155-2165. doi: 10.1038/s41388-023-02738-y. Epub 2023 Jun 5.

Abstract

Glioblastoma (GBM) is one of the deadliest types of cancer and highly refractory to chemoradiation and immunotherapy. One of the main reasons for this resistance to therapy lies within the heterogeneity of the tumor and its associated microenvironment. The vast diversity of cell states, composition of cells, and phenotypical characteristics makes it difficult to accurately classify GBM into distinct subtypes and find effective therapies. The advancement of sequencing technologies in recent years has further corroborated the heterogeneity of GBM at the single cell level. Recent studies have only begun to elucidate the different cell states present in GBM and how they correlate with sensitivity to therapy. Furthermore, it has become clear that GBM heterogeneity not only depends on intrinsic factors but also strongly differs between new and recurrent GBM, and treatment naïve and experienced patients. Understanding and connecting the complex cellular network that underlies GBM heterogeneity will be indispensable in finding new ways to tackle this deadly disease. Here, we present an overview of the multiple layers of GBM heterogeneity and discuss novel findings in the age of single cell technologies.

摘要

胶质母细胞瘤(GBM)是最致命的癌症类型之一,对放化疗和免疫疗法高度耐受。这种治疗耐药性的主要原因之一在于肿瘤及其相关微环境的异质性。细胞状态、细胞组成和表型特征的巨大多样性使得准确地将 GBM 分为不同的亚型并找到有效的治疗方法变得困难。近年来测序技术的进步进一步证实了 GBM 在单细胞水平上的异质性。最近的研究才刚刚开始阐明 GBM 中存在的不同细胞状态以及它们与对治疗的敏感性的相关性。此外,很明显,GBM 异质性不仅取决于内在因素,而且在新的和复发性 GBM 之间、在治疗初治和经验丰富的患者之间也有很大的不同。了解和连接构成 GBM 异质性基础的复杂细胞网络,对于寻找新的方法来攻克这种致命疾病是必不可少的。在这里,我们概述了 GBM 异质性的多个层次,并讨论了单细胞技术时代的新发现。

相似文献

1
Glioblastoma heterogeneity at single cell resolution.
Oncogene. 2023 Jun;42(27):2155-2165. doi: 10.1038/s41388-023-02738-y. Epub 2023 Jun 5.
2
New insights for precision treatment of glioblastoma from analysis of single-cell lncRNA expression.
J Cancer Res Clin Oncol. 2021 Jul;147(7):1881-1895. doi: 10.1007/s00432-021-03584-9. Epub 2021 Mar 11.
5
The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma.
Cells. 2021 Feb 24;10(3):484. doi: 10.3390/cells10030484.
6
Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma.
Ann Oncol. 2017 Jul 1;28(7):1448-1456. doi: 10.1093/annonc/mdx169.
7
Advances in Experimental Targeted Therapy and Immunotherapy for Patients with Glioblastoma Multiforme.
Anticancer Res. 2017 Jan;37(1):21-33. doi: 10.21873/anticanres.11285.
8
Current advances in PD-1/PD-L1 axis-related tumour-infiltrating immune cells and therapeutic regimens in glioblastoma.
Crit Rev Oncol Hematol. 2020 Jul;151:102965. doi: 10.1016/j.critrevonc.2020.102965. Epub 2020 Apr 24.
9
Comparison of glioblastoma (GBM) molecular classification methods.
Semin Cancer Biol. 2018 Dec;53:201-211. doi: 10.1016/j.semcancer.2018.07.006. Epub 2018 Jul 19.
10
Glioblastoma multiforme: novel therapeutic targets.
Expert Opin Ther Targets. 2020 Jul;24(7):605-614. doi: 10.1080/14728222.2020.1762568. Epub 2020 May 12.

引用本文的文献

2
Treatment Resistant Persister Cells Exploit Macrophage Lipid Metabolism to Sustain Glioblastoma Growth.
bioRxiv. 2025 Jun 10:2025.06.07.658345. doi: 10.1101/2025.06.07.658345.
3
Rational therapeutic targeting of myeloid cells in glioblastoma: challenges and perspectives.
Front Immunol. 2025 Jun 26;16:1472710. doi: 10.3389/fimmu.2025.1472710. eCollection 2025.
5
Dual-Plasma Discharge Tube for Synergistic Glioblastoma Treatment.
Cancers (Basel). 2025 Jun 18;17(12):2036. doi: 10.3390/cancers17122036.
6
A Toolkit for Single-Nucleus Characterization of Glioblastoma.
Methods Mol Biol. 2025;2944:227-237. doi: 10.1007/978-1-0716-4654-0_18.
7
Mechanotransduction as a therapeutic target for brain tumours.
EBioMedicine. 2025 Jun 16;117:105808. doi: 10.1016/j.ebiom.2025.105808.
8
Utilization of universal-targeting mSA2 CAR-T cells for the treatment of glioblastoma.
Oncoimmunology. 2025 Dec;14(1):2518631. doi: 10.1080/2162402X.2025.2518631. Epub 2025 Jun 15.
9
scDown: A Pipeline for Single-Cell RNA-Seq Downstream Analysis.
Int J Mol Sci. 2025 May 30;26(11):5297. doi: 10.3390/ijms26115297.

本文引用的文献

1
Functional Contribution and Clinical Implication of Cancer-Associated Fibroblasts in Glioblastoma.
Clin Cancer Res. 2024 Feb 16;30(4):865-876. doi: 10.1158/1078-0432.CCR-23-0493.
4
A single-cell atlas of glioblastoma evolution under therapy reveals cell-intrinsic and cell-extrinsic therapeutic targets.
Nat Cancer. 2022 Dec;3(12):1534-1552. doi: 10.1038/s43018-022-00475-x. Epub 2022 Dec 20.
5
The landscape of tumor cell states and spatial organization in H3-K27M mutant diffuse midline glioma across age and location.
Nat Genet. 2022 Dec;54(12):1881-1894. doi: 10.1038/s41588-022-01236-3. Epub 2022 Dec 5.
6
Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma.
Cancer Discov. 2022 Dec 2;12(12):2820-2837. doi: 10.1158/2159-8290.CD-22-0196.
8
Spatially resolved multi-omics deciphers bidirectional tumor-host interdependence in glioblastoma.
Cancer Cell. 2022 Jun 13;40(6):639-655.e13. doi: 10.1016/j.ccell.2022.05.009.
9
Immune landscape of a genetically engineered murine model of glioma compared with human glioma.
JCI Insight. 2022 Jun 22;7(12):e148990. doi: 10.1172/jci.insight.148990.
10
Single-cell RNA sequencing reveals evolution of immune landscape during glioblastoma progression.
Nat Immunol. 2022 Jun;23(6):971-984. doi: 10.1038/s41590-022-01215-0. Epub 2022 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验