Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States.
Anal Chem. 2023 Jun 27;95(25):9589-9597. doi: 10.1021/acs.analchem.3c01222. Epub 2023 Jun 9.
The structural stability of biomolecules in the gas phase remains an important topic in mass spectrometry applications for structural biology. Here, we evaluate the kinetic stability of native-like protein ions using time-dependent, tandem ion mobility (IM). In these tandem IM experiments, ions of interest are mobility-selected after a first dimension of IM and trapped for up to ∼14 s. Time-dependent, collision cross section distributions are then determined from separations in a second dimension of IM. In these experiments, monomeric protein ions exhibited structural changes specific to both protein and charge state, whereas large protein complexes did not undergo resolvable structural changes on the timescales of these experiments. We also performed energy-dependent experiments, i.e., collision-induced unfolding, as a comparison for time-dependent experiments to understand the extent of unfolding. Collision cross section values observed in energy-dependent experiments using high collision energies were significantly larger than those observed in time-dependent experiments, indicating that the structures observed in time-dependent experiments remain kinetically trapped and retain some memory of their solution-phase structure. Although structural evolution should be considered for highly charged, monomeric protein ions, these experiments demonstrate that higher-mass protein ions can have remarkable kinetic stability in the gas phase.
生物分子在气相中的结构稳定性仍然是质谱应用于结构生物学的一个重要课题。在这里,我们使用时间依赖性串联离子淌度(IM)来评估天然样蛋白离子的动力学稳定性。在这些串联 IM 实验中,在第一维 IM 后对感兴趣的离子进行淌度选择,并在第二维 IM 中进行分离,以最长约 14 s 的时间进行捕获。然后从第二维 IM 中的分离确定时间相关的碰撞截面分布。在这些实验中,单体蛋白离子表现出特定于蛋白质和电荷状态的结构变化,而大的蛋白质复合物在这些实验的时间尺度上没有发生可分辨的结构变化。我们还进行了能量依赖性实验,即碰撞诱导解折叠,作为与时间依赖性实验的比较,以了解解折叠的程度。在使用高碰撞能的能量依赖性实验中观察到的碰撞截面值明显大于在时间依赖性实验中观察到的值,这表明在时间依赖性实验中观察到的结构仍然处于动力学捕获状态,并保留其溶液相结构的一些记忆。尽管对于高电荷、单体蛋白离子应该考虑结构演化,但这些实验表明,更高质量的蛋白离子在气相中具有显著的动力学稳定性。