Suppr超能文献

使用机器学习开发与 SSRI 相关出血的临床预测模型:一项可行性研究。

Using machine learning to develop a clinical prediction model for SSRI-associated bleeding: a feasibility study.

机构信息

Donald Bren School of Information and Computer Sciences, University of California Irvine, Irvine, CA, USA.

Department of Clinical Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University of California Irvine, 802 W Peltason Dr, Irvine, CA, 92697-4625, USA.

出版信息

BMC Med Inform Decis Mak. 2023 Jun 11;23(1):105. doi: 10.1186/s12911-023-02206-3.

Abstract

INTRODUCTION

Adverse drug events (ADEs) are associated with poor outcomes and increased costs but may be prevented with prediction tools. With the National Institute of Health All of Us (AoU) database, we employed machine learning (ML) to predict selective serotonin reuptake inhibitor (SSRI)-associated bleeding.

METHODS

The AoU program, beginning in 05/2018, continues to recruit ≥ 18 years old individuals across the United States. Participants completed surveys and consented to contribute electronic health record (EHR) for research. Using the EHR, we determined participants who were exposed to SSRIs (citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, sertraline, vortioxetine). Features (n = 88) were selected with clinicians' input and comprised sociodemographic, lifestyle, comorbidities, and medication use information. We identified bleeding events with validated EHR algorithms and applied logistic regression, decision tree, random forest, and extreme gradient boost to predict bleeding during SSRI exposure. We assessed model performance with area under the receiver operating characteristic curve statistic (AUC) and defined clinically significant features as resulting in > 0.01 decline in AUC after removal from the model, in three of four ML models.

RESULTS

There were 10,362 participants exposed to SSRIs, with 9.6% experiencing a bleeding event during SSRI exposure. For each SSRI, performance across all four ML models was relatively consistent. AUCs from the best models ranged 0.632-0.698. Clinically significant features included health literacy for escitalopram, and bleeding history and socioeconomic status for all SSRIs.

CONCLUSIONS

We demonstrated feasibility of predicting ADEs using ML. Incorporating genomic features and drug interactions with deep learning models may improve ADE prediction.

摘要

简介

药物不良反应(ADE)与不良预后和成本增加有关,但可以通过预测工具预防。我们利用美国国立卫生研究院全民健康研究(AoU)数据库,采用机器学习(ML)预测选择性 5-羟色胺再摄取抑制剂(SSRI)相关出血事件。

方法

AoU 项目于 2018 年 5 月开始,持续在美国各地招募≥18 岁的个体。参与者完成调查并同意为研究贡献电子健康记录(EHR)。我们使用 EHR 确定暴露于 SSRI(西酞普兰、艾司西酞普兰、氟西汀、氟伏沙明、帕罗西汀、舍曲林、沃替西汀)的参与者。特征(n=88)是在临床医生的指导下选择的,包括社会人口统计学、生活方式、合并症和药物使用信息。我们使用验证后的 EHR 算法确定出血事件,并应用逻辑回归、决策树、随机森林和极端梯度提升来预测 SSRI 暴露期间的出血。我们使用接收者操作特征曲线下面积统计量(AUC)评估模型性能,并将 AUC 下降超过 0.01 定义为在四种 ML 模型中的三种模型中从模型中删除后导致的有临床意义的特征。

结果

有 10362 名参与者暴露于 SSRI,其中 9.6%在 SSRI 暴露期间发生出血事件。对于每种 SSRI,所有四种 ML 模型的性能都相对一致。最佳模型的 AUC 范围为 0.632-0.698。有临床意义的特征包括艾司西酞普兰的健康素养,以及所有 SSRI 的出血史和社会经济地位。

结论

我们证明了使用 ML 预测 ADE 的可行性。将基因组特征和药物相互作用与深度学习模型结合使用,可能会提高 ADE 预测的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e4a/10257821/0ae6704604b8/12911_2023_2206_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验