Biobank for Translational and Digital Medicine Unit, Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Milan, 20141, Italy.
Oncol Res. 2022 Aug 31;29(4):229-233. doi: 10.32604/or.2022.024892. eCollection 2021.
Digital Pathology is becoming more and more important to achieve the goal of precision medicine. Advances in whole-slide imaging, software integration, and the accessibility of storage solutions have changed the pathologists' clinical practice, not only in terms of laboratory workflow but also for diagnosis and biomarkers analysis. In parallel with the pathology setting advancement, translational medicine is approaching the unprecedented opportunities unrevealed by artificial intelligence (AI). Indeed, the increased usage of biobanks' datasets in research provided new challenges for AI applications, such as advanced algorithms, and computer-aided techniques. In this scenario, machine learning-based approaches are being propose in order to improve biobanks from biospecimens collection repositories to computational datasets. To date, evidence on how to implement digital biobanks in translational medicine is still lacking. This viewpoint article summarizes the currently available literature that supports the biobanks' role in the digital pathology era, and to provide possible practical applications of digital biobanks.
数字病理学对于实现精准医学的目标变得越来越重要。全切片成像、软件集成以及存储解决方案的可及性的进步改变了病理学家的临床实践,不仅在实验室工作流程方面,而且在诊断和生物标志物分析方面也是如此。随着病理环境的进步,转化医学正在为人工智能 (AI) 带来前所未有的机遇。事实上,生物库数据集在研究中的使用增加为 AI 应用带来了新的挑战,例如先进的算法和计算机辅助技术。在这种情况下,正在提出基于机器学习的方法,以便从生物标本收集库到计算数据集来改进生物库。迄今为止,关于如何在转化医学中实施数字生物库的证据仍然缺乏。本文观点总结了目前支持生物库在数字病理学时代发挥作用的可用文献,并提供了数字生物库的可能实际应用。