Yamada Masatsugu, Sugiyama Mahito
School of Multidisciplinary Sciences, Department of Informatics, The Graduate University for Advanced Studies, SOKENDAI, Kanagawa 240-0115, Japan.
National Institute of Informatics, Chiyoda-ku, Tokyo 101-8430, Japan.
ACS Omega. 2023 May 23;8(22):19575-19586. doi: 10.1021/acsomega.3c01078. eCollection 2023 Jun 6.
Designing molecular structures with desired chemical properties is an essential task in drug discovery and materials design. However, finding molecules with the optimized desired properties is still a challenging task due to combinatorial explosion of the candidate space of molecules. Here we propose a novel -based approach, which does not include any optimization in hidden space, and our generation process is highly interpretable. Our method is a two-step procedure: In the first decomposition step, we apply frequent subgraph mining to a molecular database to collect a smaller size of subgraphs as building blocks of molecules. In the second reassembling step, we search desirable building blocks guided via reinforcement learning and combine them to generate new molecules. Our experiments show that our method not only can find better molecules in terms of two standard criteria, the penalized log and druglikeness, but also can generate drug molecules showing the valid intermediate molecules.
设计具有所需化学性质的分子结构是药物发现和材料设计中的一项重要任务。然而,由于分子候选空间的组合爆炸,找到具有优化所需性质的分子仍然是一项具有挑战性的任务。在此,我们提出一种基于新颖性的方法,该方法在隐藏空间中不进行任何优化,并且我们的生成过程具有高度可解释性。我们的方法是一个两步过程:在第一个分解步骤中,我们对分子数据库应用频繁子图挖掘,以收集较小尺寸的子图作为分子的构建块。在第二个重新组装步骤中,我们通过强化学习引导搜索所需的构建块,并将它们组合以生成新分子。我们的实验表明,我们的方法不仅可以根据两个标准,即惩罚对数和类药物性,找到更好的分子,而且还可以生成显示有效中间分子的药物分子。