Dias Lucas D, Aguiar Antônio S N, de Melo Nícolas J, Inada Natalia M, Borges Leonardo L, de Aquino Gilberto L B, Camargo Ademir J, Bagnato Vanderlei S, Napolitano Hamilton B
Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis GO, Brazil; Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil.
Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil.
Photodiagnosis Photodyn Ther. 2023 Sep;43:103654. doi: 10.1016/j.pdpdt.2023.103654. Epub 2023 Jun 10.
Antimicrobial photodynamic therapy (aPDT) is an alternative tool to commercial antibiotics for the inactivation of pathogenic bacteria (e.g., S. aureus). However, there is still a lack of understanding of the molecular modeling of the photosensitizers and their mechanism of action through oxidative pathways. Herein, a combined experimental and computational evaluation of curcumin as a photosensitizer against S. aureus was performed. The radical forms of keto-enol tautomers and the energies of curcumin's frontier molecular orbitals were evaluated by density functional theory (DFT) to point out the photodynamic action as well as the photobleaching process. Furthermore, the electronic transitions of curcumin keto-enol tautomers were undertaken to predict the transitions as a photosensitizer during the antibacterial photodynamic process. Moreover, molecular docking was used to evaluate the binding affinity with the S. aureus tyrosyl-tRNA synthetase as the proposed a target for curcumin. In this regard, the molecular orbital energies show that the curcumin enol form has a character of 4.5% more basic than the keto form - the enol form is a more promising electron donor than its tautomer. Curcumin is a strong electrophile, with the enol form being 4.6% more electrophilic than its keto form. In addition, the regions susceptible to nucleophilic attack and photobleaching were evaluated by the Fukui function. Regarding the docking analysis, the model suggested that four hydrogen bonds contribute to the binding energy of curcumin's interaction with the ligand binding site of S. aureus tyrosyl-tRNA synthetase. Finally, residues Tyr36, Asp40, and Asp177 contact curcumin and may contribute to orienting the curcumin in the active area. Moreover, curcumin presented a photoinactivation of 4.5 log unit corroborating the necessity of the combined action of curcumin, light, and O to promote the photooxidation damage of S. aureus. These computational and experimental data suggest insights regarding the mechanism of action of curcumin as a photosensitizer to inactivate S. aureus bacteria.
抗菌光动力疗法(aPDT)是一种用于使病原菌(如金黄色葡萄球菌)失活的替代商业抗生素的工具。然而,目前对于光敏剂的分子建模及其通过氧化途径的作用机制仍缺乏了解。在此,对姜黄素作为抗金黄色葡萄球菌光敏剂进行了实验和计算相结合的评估。通过密度泛函理论(DFT)评估了姜黄素酮 - 烯醇互变异构体的自由基形式及其前沿分子轨道的能量,以指出其光动力作用以及光漂白过程。此外,对姜黄素酮 - 烯醇互变异构体的电子跃迁进行了研究,以预测其在抗菌光动力过程中作为光敏剂的跃迁。此外,使用分子对接来评估与金黄色葡萄球菌酪氨酰 - tRNA合成酶的结合亲和力,该酶被认为是姜黄素的作用靶点。在这方面,分子轨道能量表明姜黄素烯醇形式的碱性比酮形式高4.5%——烯醇形式是比其互变异构体更有前景的电子供体。姜黄素是一种强亲电试剂,烯醇形式的亲电性比酮形式高4.6%。此外,通过福井函数评估了易受亲核攻击和光漂白的区域。关于对接分析,模型表明四个氢键有助于姜黄素与金黄色葡萄球菌酪氨酰 - tRNA合成酶配体结合位点相互作用的结合能。最后,残基Tyr36、Asp40和Asp177与姜黄素接触,并可能有助于将姜黄素定位在活性区域。此外,姜黄素呈现出4.5个对数单位的光灭活效果,证实了姜黄素、光和氧气共同作用促进金黄色葡萄球菌光氧化损伤的必要性。这些计算和实验数据为姜黄素作为光敏剂使金黄色葡萄球菌失活的作用机制提供了见解。