Suppr超能文献

利用组合代谢工程策略工程化大肠杆菌 BL21 (DE3) 以高产角鲨烯 A,β-榄香烯的前体。

Engineering Escherichia coli BL21 (DE3) for high-yield production of germacrene A, a precursor of β-elemene via combinatorial metabolic engineering strategies.

机构信息

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.

National Engineering Research Center of Cereal Fermentation, and Food Biomanufacturing, Jiangnan University, Wuxi, China.

出版信息

Biotechnol Bioeng. 2023 Oct;120(10):3039-3056. doi: 10.1002/bit.28467. Epub 2023 Jun 13.

Abstract

β-elemene is one of the most commonly used antineoplastic drugs in cancer treatment. As a plant-derived natural chemical, biologically engineering microorganisms to produce germacrene A to be converted to β-elemene harbors great expectations since chemical synthesis and plant isolation methods come with their production deficiencies. In this study, we report the design of an Escherichia coli cell factory for the de novo production of germacrene A to be converted to β-elemene from a simple carbon source. A series of systematic approaches of engineering the isoprenoid and central carbon pathways, translational and protein engineering of the sesquiterpene synthase, and exporter engineering yielded high-efficient β-elemene production. Specifically, deleting competing pathways in the central carbon pathway ensured the availability of acetyl-coA, pyruvate, and glyceraldehyde-3-phosphate for the isoprenoid pathways. Adopting lycopene color as a high throughput screening method, an optimized NS was obtained via error-prone polymerase chain reaction mutagenesis. Further overexpression of key pathway enzymes, exporter genes, and translational engineering produced 1161.09 mg/L of β-elemene in a shake flask. Finally, we detected the highest reported titer of 3.52 g/L of β-elemene and 2.13 g/L germacrene A produced by an E. coli cell factory in a 4-L fed-batch fermentation. The systematic engineering reported here generally applies to microbial production of a broader range of chemicals. This illustrates that rewiring E. coli central metabolism is viable for producing acetyl-coA-derived and pyruvate-derived molecules cost-effectively.

摘要

β-榄香烯是癌症治疗中最常用的抗肿瘤药物之一。作为一种植物来源的天然化学物质,通过生物工程微生物来生产金合欢烯 A 并将其转化为 β-榄香烯,具有很大的期望,因为化学合成和植物分离方法存在生产缺陷。在这项研究中,我们报告了一种大肠杆菌细胞工厂的设计,用于从简单的碳源从头生产金合欢烯 A 并将其转化为 β-榄香烯。通过系统地工程化异戊二烯和中心碳途径、翻译和倍半萜合酶的蛋白质工程以及外排泵工程,产生了高效的 β-榄香烯生产。具体来说,在中心碳途径中删除竞争途径可确保乙酰辅酶 A、丙酮酸和 3-磷酸甘油醛可用于异戊二烯途径。采用番茄红素颜色作为高通量筛选方法,通过易错聚合酶链反应诱变获得了优化的 NS。进一步过表达关键途径酶、外排泵基因和翻译工程,在摇瓶中产生了 1161.09mg/L 的 β-榄香烯。最后,我们在 4-L 分批补料发酵中检测到 3.52g/L 的 β-榄香烯和 2.13g/L 金合欢烯 A 的最高报道滴度,这是由大肠杆菌细胞工厂产生的。这里报道的系统工程通常适用于更广泛的化学物质的微生物生产。这表明,重新布线大肠杆菌中心代谢是一种可行的方法,可以有效地生产乙酰辅酶 A 衍生和丙酮酸衍生的分子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验