Suppr超能文献

基于结构的致病性关系识别器,用于预测单错义变异的影响,并发现更高阶的癌症易感性突变簇。

Structure-based pathogenicity relationship identifier for predicting effects of single missense variants and discovery of higher-order cancer susceptibility clusters of mutations.

机构信息

Center for Bioinformatics and Quantitative Biology, Richard and Loan Hill, Department of Biomedical Engineering, University of Illinois at Chicago, W103 Suite, 820 S Wood St, 60612 IL, USA.

Center for Molecular Medicine and Genetics, Biochemistry and Molecular Biology Department, School of Medicine, Wayne State University, 540 E. Canfield Avenue, 48201MI, USA.

出版信息

Brief Bioinform. 2023 Jul 20;24(4). doi: 10.1093/bib/bbad206.

Abstract

We report the structure-based pathogenicity relationship identifier (SPRI), a novel computational tool for accurate evaluation of pathological effects of missense single mutations and prediction of higher-order spatially organized units of mutational clusters. SPRI can effectively extract properties determining pathogenicity encoded in protein structures, and can identify deleterious missense mutations of germ line origin associated with Mendelian diseases, as well as mutations of somatic origin associated with cancer drivers. It compares favorably to other methods in predicting deleterious mutations. Furthermore, SPRI can discover spatially organized pathogenic higher-order spatial clusters (patHOS) of deleterious mutations, including those of low recurrence, and can be used for discovery of candidate cancer driver genes and driver mutations. We further demonstrate that SPRI can take advantage of AlphaFold2 predicted structures and can be deployed for saturation mutation analysis of the whole human proteome.

摘要

我们报告了基于结构的致病性关系识别器(SPRI),这是一种用于准确评估错义单突变的致病性影响和预测突变簇的高阶空间组织单位的新型计算工具。SPRI 可以有效地提取蛋白质结构中编码的致病性决定因素,并可以识别与孟德尔疾病相关的种系来源的有害错义突变,以及与癌症驱动因素相关的体来源的突变。它在预测有害突变方面优于其他方法。此外,SPRI 可以发现具有空间组织的致病性高阶空间簇(patHOS)的有害突变,包括那些低复发的突变,可用于发现候选癌症驱动基因和驱动突变。我们进一步证明,SPRI 可以利用 AlphaFold2 预测的结构,并可用于整个人类蛋白质组的饱和突变分析。

相似文献

2
Predicting the pathogenicity of missense variants using features derived from AlphaFold2.
Bioinformatics. 2023 May 4;39(5). doi: 10.1093/bioinformatics/btad280.
4
Identifying Driver Interfaces Enriched for Somatic Missense Mutations in Tumors.
Methods Mol Biol. 2019;1907:51-72. doi: 10.1007/978-1-4939-8967-6_4.
6
CHASMplus Reveals the Scope of Somatic Missense Mutations Driving Human Cancers.
Cell Syst. 2019 Jul 24;9(1):9-23.e8. doi: 10.1016/j.cels.2019.05.005. Epub 2019 Jun 12.
7
SIGMA leverages protein structural information to predict the pathogenicity of missense variants.
Cell Rep Methods. 2024 Jan 22;4(1):100687. doi: 10.1016/j.crmeth.2023.100687. Epub 2024 Jan 10.
8
PdmIRD: missense variants pathogenicity prediction for inherited retinal diseases in a disease-specific manner.
Hum Genet. 2024 Mar;143(3):331-342. doi: 10.1007/s00439-024-02645-6. Epub 2024 Mar 13.
9
Protein dynamics analysis identifies candidate cancer driver genes and mutations in TCGA data.
Proteins. 2021 Jun;89(6):721-730. doi: 10.1002/prot.26054. Epub 2021 Feb 16.
10
Computational Approaches to Prioritize Cancer Driver Missense Mutations.
Int J Mol Sci. 2018 Jul 20;19(7):2113. doi: 10.3390/ijms19072113.

引用本文的文献

1
StructMAn 2.0 Web: a web server for structural annotation of protein sequences and mutations.
Nucleic Acids Res. 2025 Jul 7;53(W1):W528-W533. doi: 10.1093/nar/gkaf381.
2
Accurate identification and mechanistic evaluation of pathogenic missense variants with .
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2418100122. doi: 10.1073/pnas.2418100122. Epub 2025 May 2.
4
Accurate Identification and Mechanistic Evaluation of Pathogenic Missense Variants with .
bioRxiv. 2025 Mar 6:2025.02.17.638727. doi: 10.1101/2025.02.17.638727.
5
Dynamics-based protein network features accurately discriminate neutral and rheostat positions.
Biophys J. 2024 Oct 15;123(20):3612-3626. doi: 10.1016/j.bpj.2024.09.013. Epub 2024 Sep 13.
6
CASTpFold: Computed Atlas of Surface Topography of the universe of protein Folds.
Nucleic Acids Res. 2024 Jul 5;52(W1):W194-W199. doi: 10.1093/nar/gkae415.
7
CASTpFold: Computed Atlas of Surface Topography of the universe of protein Folds.
bioRxiv. 2024 May 6:2024.05.04.592496. doi: 10.1101/2024.05.04.592496.

本文引用的文献

2
Accurate prediction of protein structures and interactions using a three-track neural network.
Science. 2021 Aug 20;373(6557):871-876. doi: 10.1126/science.abj8754. Epub 2021 Jul 15.
3
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
4
Structure-based Method for Predicting Deleterious Missense SNPs.
IEEE EMBS Int Conf Biomed Health Inform. 2019 May;2019. doi: 10.1109/bhi.2019.8834504. Epub 2019 Sep 12.
5
Enhancing Cancer Driver Gene Prediction by Protein-Protein Interaction Network.
IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2231-2240. doi: 10.1109/TCBB.2021.3063532. Epub 2022 Aug 8.
7
Atomic-resolution protein structure determination by cryo-EM.
Nature. 2020 Nov;587(7832):157-161. doi: 10.1038/s41586-020-2833-4. Epub 2020 Oct 21.
8
KRAS Inhibition with Sotorasib in Advanced Solid Tumors.
N Engl J Med. 2020 Sep 24;383(13):1207-1217. doi: 10.1056/NEJMoa1917239. Epub 2020 Sep 20.
9
Dockground Tool for Development and Benchmarking of Protein Docking Procedures.
Methods Mol Biol. 2020;2165:289-300. doi: 10.1007/978-1-0716-0708-4_17.
10
LIST-S2: taxonomy based sorting of deleterious missense mutations across species.
Nucleic Acids Res. 2020 Jul 2;48(W1):W154-W161. doi: 10.1093/nar/gkaa288.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验