Suppr超能文献

基于全肿瘤细胞的疫苗:调整仪器以协调最佳抗肿瘤免疫反应。

Whole tumour cell-based vaccines: tuning the instruments to orchestrate an optimal antitumour immune response.

机构信息

Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.

Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile.

出版信息

Br J Cancer. 2023 Sep;129(4):572-585. doi: 10.1038/s41416-023-02327-6. Epub 2023 Jun 24.

Abstract

Immunotherapy, particularly those based on immune checkpoint inhibitors (ICIs), has become a useful approach for many neoplastic diseases. Despite the improvements of ICIs in supporting tumour regression and prolonging survival, many patients do not respond or develop resistance to treatment. Thus, therapies that enhance antitumour immunity, such as anticancer vaccines, constitute a feasible and promising therapeutic strategy. Whole tumour cell (WTC) vaccines have been extensively tested in clinical studies as intact or genetically modified cells or tumour lysates, injected directly or loaded on DCs with distinct adjuvants. The essential requirements of WTC vaccines include the optimal delivery of a broad battery of tumour-associated antigens, the presence of tumour cell-derived molecular danger signals, and adequate adjuvants. These factors trigger an early and robust local innate inflammatory response that orchestrates an antigen-specific and proinflammatory adaptive antitumour response capable of controlling tumour growth by several mechanisms. In this review, the strengths and weaknesses of our own and others' experiences in studying WTC vaccines are revised to discuss the essential elements required to increase anticancer vaccine effectiveness.

摘要

免疫疗法,特别是基于免疫检查点抑制剂(ICIs)的免疫疗法,已成为许多肿瘤疾病的一种有用的治疗方法。尽管 ICIs 改善了支持肿瘤消退和延长生存的效果,但许多患者对治疗没有反应或产生耐药性。因此,增强抗肿瘤免疫的疗法,如癌症疫苗,构成了一种可行且有前途的治疗策略。全肿瘤细胞(WTC)疫苗已在临床研究中广泛测试,作为完整或基因修饰的细胞或肿瘤裂解物,直接注射或用不同佐剂加载于树突状细胞。WTC 疫苗的基本要求包括最佳递呈广泛的肿瘤相关抗原,存在肿瘤细胞来源的分子危险信号,以及适当的佐剂。这些因素引发早期和强烈的局部先天炎症反应,协调抗原特异性和促炎适应性抗肿瘤反应,通过多种机制控制肿瘤生长。在这篇综述中,我们讨论了增加癌症疫苗有效性所需的基本要素,回顾了我们自己和其他人在研究 WTC 疫苗方面的经验的优缺点。

相似文献

1
Whole tumour cell-based vaccines: tuning the instruments to orchestrate an optimal antitumour immune response.
Br J Cancer. 2023 Sep;129(4):572-585. doi: 10.1038/s41416-023-02327-6. Epub 2023 Jun 24.
2
Kickstarting Immunity in Cold Tumours: Localised Tumour Therapy Combinations With Immune Checkpoint Blockade.
Front Immunol. 2021 Oct 18;12:754436. doi: 10.3389/fimmu.2021.754436. eCollection 2021.
3
Dendritic cell fusion vaccines for cancer immunotherapy.
Expert Opin Biol Ther. 2005 May;5(5):703-15. doi: 10.1517/14712598.5.5.703.
4
Therapeutic Vaccines for Cancer Immunotherapy.
ACS Biomater Sci Eng. 2020 Nov 9;6(11):6036-6052. doi: 10.1021/acsbiomaterials.0c01201. Epub 2020 Oct 23.
5
Genetically modified tumour vaccines--where we are today.
Cancer Treat Rev. 1999 Feb;25(1):29-46. doi: 10.1053/ctrv.1998.0104.
6
Specific immunotherapy of cancer in elderly patients.
Drugs Aging. 2001;18(9):639-64. doi: 10.2165/00002512-200118090-00002.
7
Antitumour dendritic cell vaccination in a priming and boosting approach.
Nat Rev Drug Discov. 2020 Sep;19(9):635-652. doi: 10.1038/s41573-020-0074-8. Epub 2020 Aug 6.
9
Immuno-oncology: understanding the function and dysfunction of the immune system in cancer.
Ann Oncol. 2012 Sep;23 Suppl 8(Suppl 8):viii6-9. doi: 10.1093/annonc/mds256.

引用本文的文献

1
Prospects and Challenges of Lung Cancer Vaccines.
Vaccines (Basel). 2025 Aug 5;13(8):836. doi: 10.3390/vaccines13080836.
2
3
Cancer Vaccines: A Promising Therapeutic Strategy in Advanced Solid Tumors.
Vaccines (Basel). 2025 May 30;13(6):591. doi: 10.3390/vaccines13060591.
4
Neoantigen enriched biomimetic nanovaccine for personalized cancer immunotherapy.
Nat Commun. 2025 May 23;16(1):4783. doi: 10.1038/s41467-025-59977-8.
5
Recent advances in therapeutic cancer vaccines.
Nat Rev Cancer. 2025 May 16. doi: 10.1038/s41568-025-00820-z.
7
Immunotherapy in Breast Cancer: Beyond Immune Checkpoint Inhibitors.
Int J Mol Sci. 2025 Apr 21;26(8):3920. doi: 10.3390/ijms26083920.
8
Engineering bioactive mineralized tumor cells for tumor immunotherapy.
Front Bioeng Biotechnol. 2025 Apr 1;13:1582490. doi: 10.3389/fbioe.2025.1582490. eCollection 2025.
10
Translational Advances in Oncogene and Tumor-Suppressor Gene Research.
Cancers (Basel). 2025 Mar 17;17(6):1008. doi: 10.3390/cancers17061008.

本文引用的文献

2
Roles of CD4+ T cells as mediators of antitumor immunity.
Front Immunol. 2022 Sep 9;13:972021. doi: 10.3389/fimmu.2022.972021. eCollection 2022.
3
Cancer vaccines: the next immunotherapy frontier.
Nat Cancer. 2022 Aug;3(8):911-926. doi: 10.1038/s43018-022-00418-6. Epub 2022 Aug 23.
5
The A to I editing landscape in melanoma and its relation to clinical outcome.
RNA Biol. 2022 Jan;19(1):996-1006. doi: 10.1080/15476286.2022.2110390.
6
Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity.
Nat Commun. 2022 Jun 27;13(1):3676. doi: 10.1038/s41467-022-31218-2.
7
An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives.
Vaccines (Basel). 2022 May 22;10(5):819. doi: 10.3390/vaccines10050819.
8
Dendritic cells can prime anti-tumor CD8 T cell responses through major histocompatibility complex cross-dressing.
Immunity. 2022 Jun 14;55(6):982-997.e8. doi: 10.1016/j.immuni.2022.04.016. Epub 2022 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验