Suppr超能文献

审视2017年至2022年与流感疫苗接种相关的负面情绪:对261,613条推特帖子的无监督深度学习分析

Examining the Negative Sentiments Related to Influenza Vaccination from 2017 to 2022: An Unsupervised Deep Learning Analysis of 261,613 Twitter Posts.

作者信息

Ng Qin Xiang, Lee Dawn Yi Xin, Ng Clara Xinyi, Yau Chun En, Lim Yu Liang, Liew Tau Ming

机构信息

Health Services Research Unit, Singapore General Hospital, Singapore 169608, Singapore.

MOH Holdings Pte Ltd., 1 Maritime Square, Singapore 099253, Singapore.

出版信息

Vaccines (Basel). 2023 May 23;11(6):1018. doi: 10.3390/vaccines11061018.

Abstract

Several countries are witnessing significant increases in influenza cases and severity. Despite the availability, effectiveness and safety of influenza vaccination, vaccination coverage remains suboptimal globally. In this study, we examined the prevailing negative sentiments related to influenza vaccination via a deep learning analysis of public Twitter posts over the past five years. We extracted original tweets containing the terms 'flu jab', '#flujab', 'flu vaccine', '#fluvaccine', 'influenza vaccine', '#influenzavaccine', 'influenza jab', or '#influenzajab', and posted in English from 1 January 2017 to 1 November 2022. We then identified tweets with negative sentiment from individuals, and this was followed by topic modelling using machine learning models and qualitative thematic analysis performed independently by the study investigators. A total of 261,613 tweets were analyzed. Topic modelling and thematic analysis produced five topics grouped under two major themes: (1) criticisms of governmental policies related to influenza vaccination and (2) misinformation related to influenza vaccination. A significant majority of the tweets were centered around perceived influenza vaccine mandates or coercion to vaccinate. Our analysis of temporal trends also showed an increase in the prevalence of negative sentiments related to influenza vaccination from the year 2020 onwards, which possibly coincides with misinformation related to COVID-19 policies and vaccination. There was a typology of misperceptions and misinformation underlying the negative sentiments related to influenza vaccination. Public health communications should be mindful of these findings.

摘要

几个国家的流感病例数和严重程度都在显著增加。尽管流感疫苗具有可得性、有效性和安全性,但全球疫苗接种覆盖率仍未达到最佳水平。在本研究中,我们通过对过去五年公众推特帖子进行深度学习分析,研究了与流感疫苗接种相关的普遍负面情绪。我们提取了2017年1月1日至2022年11月1日期间发布的、包含“流感疫苗接种”“#流感疫苗接种”“流感疫苗”“#流感疫苗”“流感疫苗接种”“#流感疫苗接种”“流感疫苗注射”或“#流感疫苗注射”等术语的英文原创推文。然后,我们识别出个人发布的带有负面情绪的推文,随后使用机器学习模型进行主题建模,并由研究调查人员独立进行定性主题分析。共分析了261,613条推文。主题建模和主题分析产生了五个主题,分为两个主要类别:(1)对政府流感疫苗接种政策的批评,以及(2)与流感疫苗接种相关的错误信息。绝大多数推文集中在对流感疫苗强制接种或强制要求接种的认知上。我们对时间趋势的分析还表明,从2020年起,与流感疫苗接种相关的负面情绪患病率有所增加,这可能与与新冠疫情政策和疫苗接种相关的错误信息相吻合。与流感疫苗接种相关的负面情绪背后存在一种误解和错误信息的类型。公共卫生宣传应留意这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb47/10305179/05f8e86b85a4/vaccines-11-01018-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验