Kan Xuan, Cui Hejie, Lukemire Joshua, Guo Ying, Yang Carl
Department of Computer Science, Emory University.
Department of Biostatistics and Bioinformatics, Emory University.
Proc Mach Learn Res. 2022 Jul;172:618-637.
Functional magnetic resonance imaging (fMRI) is one of the most common imaging modalities to investigate brain functions. Recent studies in neuroscience stress the great potential of functional brain networks constructed from fMRI data for clinical predictions. Traditional functional brain networks, however, are noisy and unaware of downstream prediction tasks, while also incompatible with the deep graph neural network (GNN) models. In order to fully unleash the power of GNNs in network-based fMRI analysis, we develop FBNETGEN, a task-aware and interpretable fMRI analysis framework via deep brain network generation. In particular, we formulate (1) prominent region of interest (ROI) features extraction, (2) brain networks generation, and (3) clinical predictions with GNNs, in an end-to-end trainable model under the guidance of particular prediction tasks. Along with the process, the key novel component is the graph generator which learns to transform raw time-series features into task-oriented brain networks. Our learnable graphs also provide unique interpretations by highlighting prediction-related brain regions. Comprehensive experiments on two datasets, i.e., the recently released and currently largest publicly available fMRI dataset Adolescent Brain Cognitive Development (ABCD), and the widely-used fMRI dataset PNC, prove the superior effectiveness and interpretability of FBNETGEN. The implementation is available at https://github.com/Wayfear/FBNETGEN.
功能磁共振成像(fMRI)是研究脑功能最常用的成像方式之一。神经科学领域的最新研究强调了从功能磁共振成像数据构建的功能性脑网络在临床预测方面的巨大潜力。然而,传统的功能性脑网络存在噪声,且未考虑下游预测任务,同时也与深度图神经网络(GNN)模型不兼容。为了在基于网络的功能磁共振成像分析中充分发挥GNN的作用,我们开发了FBNETGEN,这是一个通过深度脑网络生成实现任务感知和可解释的功能磁共振成像分析框架。具体而言,我们在特定预测任务的指导下,在一个端到端可训练的模型中制定了(1)突出的感兴趣区域(ROI)特征提取、(2)脑网络生成以及(3)使用GNN进行临床预测。在此过程中,关键的新颖组件是图生成器,它学习将原始时间序列特征转换为面向任务的脑网络。我们的可学习图还通过突出与预测相关的脑区提供了独特的解释。在两个数据集上进行的综合实验,即最近发布且目前最大的公开可用功能磁共振成像数据集青少年大脑认知发展(ABCD)以及广泛使用的功能磁共振成像数据集PNC,证明了FBNETGEN的卓越有效性和可解释性。其实现可在https://github.com/Wayfear/FBNETGEN获取。