Suppr超能文献

FBNetGen:通过功能性脑网络生成实现基于任务感知图神经网络的功能磁共振成像分析

FBNetGen: Task-aware GNN-based fMRI Analysis via Functional Brain Network Generation.

作者信息

Kan Xuan, Cui Hejie, Lukemire Joshua, Guo Ying, Yang Carl

机构信息

Department of Computer Science, Emory University.

Department of Biostatistics and Bioinformatics, Emory University.

出版信息

Proc Mach Learn Res. 2022 Jul;172:618-637.

Abstract

Functional magnetic resonance imaging (fMRI) is one of the most common imaging modalities to investigate brain functions. Recent studies in neuroscience stress the great potential of functional brain networks constructed from fMRI data for clinical predictions. Traditional functional brain networks, however, are noisy and unaware of downstream prediction tasks, while also incompatible with the deep graph neural network (GNN) models. In order to fully unleash the power of GNNs in network-based fMRI analysis, we develop FBNETGEN, a task-aware and interpretable fMRI analysis framework via deep brain network generation. In particular, we formulate (1) prominent region of interest (ROI) features extraction, (2) brain networks generation, and (3) clinical predictions with GNNs, in an end-to-end trainable model under the guidance of particular prediction tasks. Along with the process, the key novel component is the graph generator which learns to transform raw time-series features into task-oriented brain networks. Our learnable graphs also provide unique interpretations by highlighting prediction-related brain regions. Comprehensive experiments on two datasets, i.e., the recently released and currently largest publicly available fMRI dataset Adolescent Brain Cognitive Development (ABCD), and the widely-used fMRI dataset PNC, prove the superior effectiveness and interpretability of FBNETGEN. The implementation is available at https://github.com/Wayfear/FBNETGEN.

摘要

功能磁共振成像(fMRI)是研究脑功能最常用的成像方式之一。神经科学领域的最新研究强调了从功能磁共振成像数据构建的功能性脑网络在临床预测方面的巨大潜力。然而,传统的功能性脑网络存在噪声,且未考虑下游预测任务,同时也与深度图神经网络(GNN)模型不兼容。为了在基于网络的功能磁共振成像分析中充分发挥GNN的作用,我们开发了FBNETGEN,这是一个通过深度脑网络生成实现任务感知和可解释的功能磁共振成像分析框架。具体而言,我们在特定预测任务的指导下,在一个端到端可训练的模型中制定了(1)突出的感兴趣区域(ROI)特征提取、(2)脑网络生成以及(3)使用GNN进行临床预测。在此过程中,关键的新颖组件是图生成器,它学习将原始时间序列特征转换为面向任务的脑网络。我们的可学习图还通过突出与预测相关的脑区提供了独特的解释。在两个数据集上进行的综合实验,即最近发布且目前最大的公开可用功能磁共振成像数据集青少年大脑认知发展(ABCD)以及广泛使用的功能磁共振成像数据集PNC,证明了FBNETGEN的卓越有效性和可解释性。其实现可在https://github.com/Wayfear/FBNETGEN获取。

相似文献

2
DEEP DAG LEARNING OF EFFECTIVE BRAIN CONNECTIVITY FOR FMRI ANALYSIS.
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230429. Epub 2023 Sep 1.
3
CI-GNN: A Granger causality-inspired graph neural network for interpretable brain network-based psychiatric diagnosis.
Neural Netw. 2024 Apr;172:106147. doi: 10.1016/j.neunet.2024.106147. Epub 2024 Jan 26.
4
BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis.
Med Image Anal. 2021 Dec;74:102233. doi: 10.1016/j.media.2021.102233. Epub 2021 Sep 12.
5
Multiphysical graph neural network (MP-GNN) for COVID-19 drug design.
Brief Bioinform. 2022 Jul 18;23(4). doi: 10.1093/bib/bbac231.
7
Pooling Regularized Graph Neural Network for fMRI Biomarker Analysis.
Med Image Comput Comput Assist Interv. 2020 Oct;12267:625-635. doi: 10.1007/978-3-030-59728-3_61. Epub 2020 Sep 29.
8
SP-GNN: Learning structure and position information from graphs.
Neural Netw. 2023 Apr;161:505-514. doi: 10.1016/j.neunet.2023.01.051. Epub 2023 Feb 4.
9
Graph Neural Networks in Network Neuroscience.
IEEE Trans Pattern Anal Mach Intell. 2023 May;45(5):5833-5848. doi: 10.1109/TPAMI.2022.3209686. Epub 2023 Apr 3.
10
Pre-training graph neural networks for link prediction in biomedical networks.
Bioinformatics. 2022 Apr 12;38(8):2254-2262. doi: 10.1093/bioinformatics/btac100.

引用本文的文献

1
Alzheimer's disease classification using mutual information generated graph convolutional network for functional MRI.
J Alzheimers Dis. 2025 Aug;106(3):1021-1035. doi: 10.1177/13872877251350306. Epub 2025 Jul 15.
2
Innovative biomarker exploration in ASD: Combining Graph Neural Networks and permutation testing on fMRI data.
Neuroimage Rep. 2025 Mar 26;5(2):100249. doi: 10.1016/j.ynirp.2025.100249. eCollection 2025 Jun.
3
mGNN-bw: Multi-Scale Graph Neural Network Based on Biased Random Walk Path Aggregation for ASD Diagnosis.
IEEE Trans Neural Syst Rehabil Eng. 2025;33:900-910. doi: 10.1109/TNSRE.2025.3543177.
4
5
SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis.
Mach Learn Clin Neuroimaging (2024). 2025;15266:46-56. doi: 10.1007/978-3-031-78761-4_5. Epub 2024 Dec 6.
6
Multi-modal cross-domain self-supervised pre-training for fMRI and EEG fusion.
Neural Netw. 2025 Apr;184:107066. doi: 10.1016/j.neunet.2024.107066. Epub 2024 Dec 24.
7
Brain networks and intelligence: A graph neural network based approach to resting state fMRI data.
Med Image Anal. 2025 Apr;101:103433. doi: 10.1016/j.media.2024.103433. Epub 2024 Dec 16.
8
A simple but tough-to-beat baseline for fMRI time-series classification.
Neuroimage. 2024 Dec 1;303:120909. doi: 10.1016/j.neuroimage.2024.120909. Epub 2024 Nov 6.
9
DEEP DAG LEARNING OF EFFECTIVE BRAIN CONNECTIVITY FOR FMRI ANALYSIS.
Proc IEEE Int Symp Biomed Imaging. 2023 Apr;2023. doi: 10.1109/isbi53787.2023.10230429. Epub 2023 Sep 1.
10
Weakly-Supervised Scientific Document Classification via Retrieval-Augmented Multi-Stage Training.
Int ACM SIGIR Conf Res Dev Inf Retr. 2023 Jul;2023:2501-2505. doi: 10.1145/3539618.3592085. Epub 2023 Jul 18.

本文引用的文献

1
BrainGNN: Interpretable Brain Graph Neural Network for fMRI Analysis.
Med Image Anal. 2021 Dec;74:102233. doi: 10.1016/j.media.2021.102233. Epub 2021 Sep 12.
2
Bayesian Joint Modeling of Multiple Brain Functional Networks.
J Am Stat Assoc. 2021;116(534):518-530. doi: 10.1080/01621459.2020.1796357. Epub 2020 Sep 1.
3
Graph Neural Network for Interpreting Task-fMRI Biomarkers.
Med Image Comput Comput Assist Interv. 2019 Oct;11768:485-493. doi: 10.1007/978-3-030-32254-0_54. Epub 2019 Oct 10.
5
A difference degree test for comparing brain networks.
Hum Brain Mapp. 2019 Oct 15;40(15):4518-4536. doi: 10.1002/hbm.24718. Epub 2019 Jul 26.
6
A hierarchical independent component analysis model for longitudinal neuroimaging studies.
Neuroimage. 2019 Apr 1;189:380-400. doi: 10.1016/j.neuroimage.2018.12.024. Epub 2019 Jan 9.
7
Estimating dynamic brain functional networks using multi-subject fMRI data.
Neuroimage. 2018 Dec;183:635-649. doi: 10.1016/j.neuroimage.2018.07.045. Epub 2018 Jul 24.
8
Integrative Bayesian analysis of brain functional networks incorporating anatomical knowledge.
Neuroimage. 2018 Nov 1;181:263-278. doi: 10.1016/j.neuroimage.2018.07.015. Epub 2018 Jul 11.
9
The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites.
Dev Cogn Neurosci. 2018 Aug;32:43-54. doi: 10.1016/j.dcn.2018.03.001. Epub 2018 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验